521 research outputs found

    Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation

    Full text link
    Statistical DNA models available in the literature are often effective models where the base-pair state only (unbroken or broken) is considered. Because of a decrease by a factor of 30 of the effective bending rigidity of a sequence of broken bonds, or bubble, compared to the double stranded state, the inclusion of the molecular conformational degrees of freedom in a more general mesoscopic model is needed. In this paper we do so by presenting a 1D Ising model, which describes the internal base pair states, coupled to a discrete worm like chain model describing the chain configurations [J. Palmeri, M. Manghi, and N. Destainville, Phys. Rev. Lett. 99, 088103 (2007)]. This coupled model is exactly solved using a transfer matrix technique that presents an analogy with the path integral treatment of a quantum two-state diatomic molecule. When the chain fluctuations are integrated out, the denaturation transition temperature and width emerge naturally as an explicit function of the model parameters of a well defined Hamiltonian, revealing that the transition is driven by the difference in bending (entropy dominated) free energy between bubble and double-stranded segments. The calculated melting curve (fraction of open base pairs) is in good agreement with the experimental melting profile of polydA-polydT. The predicted variation of the mean-square-radius as a function of temperature leads to a coherent novel explanation for the experimentally observed thermal viscosity transition. Finally, the influence of the DNA strand length is studied in detail, underlining the importance of finite size effects, even for DNA made of several thousand base pairs.Comment: Latex, 28 pages pdf, 9 figure

    Bubbles and denaturation in DNA

    Get PDF
    The local opening of DNA is an intriguing phenomenon from a statistical physics point of view, but is also essential for its biological function. For instance, the transcription and replication of our genetic code can not take place without the unwinding of the DNA double helix. Although these biological processes are driven by proteins, there might well be a relation between these biological openings and the spontaneous bubble formation due to thermal fluctuations. Mesoscopic models, like the Peyrard-Bishop-Dauxois model, have fairly accurately reproduced some experimental denaturation curves and the sharp phase transition in the thermodynamic limit. It is, hence, tempting to see whether these models could be used to predict the biological activity of DNA. In a previous study, we introduced a method that allows to obtain very accurate results on this subject, which showed that some previous claims in this direction, based on molecular dynamics studies, were premature. This could either imply that the present PBD should be improved or that biological activity can only be predicted in a more complex frame work that involves interactions with proteins and super helical stresses. In this article, we give detailed description of the statistical method introduced before. Moreover, for several DNA sequences, we give a thorough analysis of the bubble-statistics as function of position and bubble size and the so-called ll-denaturation curves that can be measured experimentally. These show that some important experimental observations are missing in the present model. We discuss how the present model could be improved.Comment: 15 pages, 5 figures, published as Eur. Phys. J. E 20 : 421-434 AUG 200

    Investigation of biochemical biorefinery sizing and environmental sustainability impacts for conventional bale system and advanced uniform biomass logistics designs

    Get PDF
    The 2011 US Billion-Ton Update1 estimates that there are enough agricultural and forest resources to sustainably provide enough biomass to displace approximately 30% of the country’s current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend on economics, feedstock logistics, and sustainability. A cross-functional team has examined optimal combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. Biochemical-conversion-to-ethanol is analyzed for conventional bale-based system and advanced uniform-format feedstock supply system designs. The latter involves ‘pre-processing’ biomass into a higher-density, aerobically stable, easily transportable format that can supply large-scale biorefineries. Feedstock supply costs, logistics and processing costs are analyzed and compared, taking into account environmental sustainability metrics

    The Distributional Impact of Statewide Property Tax Relief: the Michigan Case

    Full text link
    This study uses data from a random survey of 2001 Michigan households to analyze the extent to which the Michigan ctreuit-breaker has been successful in reducing the income regressivity of the property tax and in changing relative property tax burdens. Because of its relatively extensive coverage, including renters as well as homeowners and the nonaged as well as the aged, the circuit-breaker has yielded a more equal distribution of income within Michigan. Its potential to change the distribution of income depends on the particular formula utilized, but redistributional effects have thus far been lamited because program participation has been positively correlated with income. To the extent that reductions in the price ofpublic services created by the circuit-breaker are perceived by households, the biggest stimulus appears to be in high property tax/high-income countiesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68848/2/10.1177_109114218301100201.pd

    Comparative efficacy and safety of biosimilar infliximab and other biological treatments in ankylosing spondylitis: systematic literature review and meta-analysis.

    Get PDF
    OBJECTIVES: To compare the efficacy and safety of infliximab-biosimilar with other biological drugs for the treatment of active ankylosing spondylitis (AS). METHODS: Systematic literature review for randomized controlled trials (RCTs) with adalimumab, etanercept, golimumab, infliximab and infliximab-biosimilar in AS was performed and indirect meta-analysis (Bayesian mixed treatment comparison) was carried out. The proportion of patients reaching 20 % improvement by the assessment of Spondyloarthritis International Society response criteria (ASAS20) at weeks 12 and 24 was used as efficacy endpoints, and the occurrence of serious adverse events at week 24 was applied to compare the safety of the biologicals. RESULTS: Altogether, 13 RCTs, identified by the systematic literature search, were included in the analysis. Results on the ASAS20 efficacy endpoint were reported for week 12 in 12 RCTs involving 2,395 patients, and for week 24 in 5 RCTs comprising 1,337 patients. All the five biological agents proved to be significantly superior to placebo. Infliximab showed the highest odds ratio (OR) of 7.2 (95 % CI 3.68-13.19) compared to placebo, followed by infliximab-biosimilar with OR 6.25 (95 % CI 2.55-13.14), both assessed at week 24. No significant difference was found between infliximab-biosimilar and other biological treatments regarding their efficacy and safety. CONCLUSIONS: This is the first study which includes a biosimilar drug in the meta-analysis of biological treatments in AS. The results have proven the similar efficacy and safety profile of infliximab-biosimilar treatment compared to other biologicals

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles

    Get PDF
    BACKGROUND: Technological advances have enabled the analysis of very small amounts of DNA in forensic cases. However, the DNA profiles from such evidence are frequently incomplete and can contain contributions from multiple individuals. The complexity of such samples confounds the assessment of the statistical weight of such evidence. One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user interface implementing these calculations are available for practicing forensic scientists. RESULTS: To address this need, we developed Lab Retriever, an open-source, freely available program that forensic scientists can use to calculate likelihood ratios for complex DNA profiles. Lab Retriever adds a graphical user interface, written primarily in JavaScript, on top of a C++ implementation of the previously published R code of Balding. We redesigned parts of the original Balding algorithm to improve computational speed. In addition to incorporating a probability of allelic drop-out and other critical parameters, Lab Retriever computes likelihood ratios for hypotheses that can include up to four unknown contributors to a mixed sample. These computations are completed nearly instantaneously on a modern PC or Mac computer. CONCLUSIONS: Lab Retriever provides a practical software solution to forensic scientists who wish to assess the statistical weight of evidence for complex DNA profiles. Executable versions of the program are freely available for Mac OSX and Windows operating systems. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0740-8) contains supplementary material, which is available to authorized users

    Raymond H. Plaut

    Get PDF
    Free Vibration Analysis of an Inflated Toroidal Shel

    Does a SLAP lesion affect shoulder muscle recruitment as measured by EMG activity during a rugby tackle?

    Get PDF
    Background: The study objective was to assess the influence of a SLAP lesion on onset of EMG activity in shoulder muscles during a front on rugby football tackle within professional rugby players. Methods: Mixed cross-sectional study evaluating between and within group differences in EMG onset times. Testing was carried out within the physiotherapy department of a university sports medicine clinic. The test group consisted of 7 players with clinically diagnosed SLAP lesions, later verified on arthroscopy. The reference group consisted of 15 uninjured and full time professional rugby players from within the same playing squad. Controlled tackles were performed against a tackle dummy. Onset of EMG activity was assessed from surface EMG of Pectorialis Major, Biceps Brachii, Latissimus Dorsi, Serratus Anterior and Infraspinatus muscles relative to time of impact. Analysis of differences in activation timing between muscles and limbs (injured versus non-injured side and non injured side versus matched reference group). Results: Serratus Anterior was activated prior to all other muscles in all (P = 0.001-0.03) subjects. In the SLAP injured shoulder Biceps was activated later than in the non-injured side. Onset times of all muscles of the noninjured shoulder in the injured player were consistently earlier compared with the reference group. Whereas, within the injured shoulder, all muscle activation timings were later than in the reference group. Conclusions: This study shows that in shoulders with a SLAP lesion there is a trend towards delay in activation time of Biceps and other muscles with the exception of an associated earlier onset of activation of Serratus anterior, possibly due to a coping strategy to protect glenohumeral stability and thoraco-scapular stability. This trend was not statistically significant in all cases

    Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire

    Get PDF
    Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα+) antigen-presenting cell subset, whilst SIRPα−CD11R1+ antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα+ antigen-presenting cells as orchestrators of early-life mucosal immune development
    • …
    corecore