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1 Introduction the frequencies and mode shapes by a trial and error method in the

Use of an inflated structure in an aerospace application gdélglzer _fa_shion. Lewig12] ar_lalyze_d an inflated toroidal_ structure
back to the early 1960’s and the ECHO series of satel{idsl- USing finite element analysis. This work uses Galerkin’s method
one and Crawfordl1]). Inflatable structures have been the subje@long with Fourier series, rather than the finite difference method
of renewed interest in recent years for space applications suchoaghe finite element method, for the free vibration analysis of an
communication antennas, solar thermal propulsion, and space isflated toroidal shell.
lar power. The major advantages of using inflatable structures inThe goal of the present paper is to perform a free vibration
space are their extremely low weight, on-orbit deployability, angnalysis of an inflated torus with free boundary conditions. It is
subsequent space saving in launching. An inflated torus is a ke¥s med that the cross-section is circular, the thickness is uniform,
component of many inflated structure desigisrnheim(2]) that nd the material is linearly elastic and isotropic. We assume that

serves as structural support for optical systems such as a tEﬁ pressure remains constant while the torus is vibrating. We use
membrane reflector or a Fresnel lens. In the design of thin elastic

shell structures, it is important to know their dynamic behavior & medified Sanders’ shell theot$anderg13], Budiansky[14]).
well as their load carrying ability. The dynamic behavior is paModifications involve inclusions of the geometric nonlinearity in
ticularly important for satellite structures since they are subjectée in-plane strains in conjunction with prestresses. Consideration
to a variety of time-varying loadings. The free vibration study i§f geometric nonlinearity is important in order to capture the ef-
needed in order to obtain the natural frequencies and the mdéets of pressure. The nonlinearity is considered only with the
shapes, which are required for the forced vibration analysis. prestresses so that the resulting vibration equations are linear. The
Free vibration of toroidal shells without pressure has been stusknding rigidity of the shell is not assumed to be negligible, and
ied by many researchers, for example, Kord@s McGill [4],  this implies that the method is valid for a large class of shells.
Kosawada et al[5], Fang[6], and Leung and Kwok7]. How- |nitig| stresses are assumed to be membrane in nature, i.e., uni-
ever, there have been few studies on the toroidal shell subjecteq jq,, throughout the thickness of the shell.
pressure. Jorda8] predicted the vibratory frequencies using the First, the toroidal shell geometry is described and the initial

Rayleigh quotient and performed experiments. Saigal ef%l. . .
found an analytical solution of a prestressed toroidal membraﬁgesses due to internal pressure are obtained. Thereafter, the equa-

with fixed boundary conditions. He assumed that the in-plane didons of motion are presented. Since it is very difficult to solve the
placement components are zero and the radius of the torus is v@@yerning partial differential equations exactly, we use the Galer-
large compared to the radius of its cross-section. The results &i¢'s method. The governing equations are reduced to ordinary
valid only for a special case of a torus due to the strong assuntifferential equations with variable coefficients using complete
tions made in order to simplify the governing equations. Plawaves in the form of sine and cosine functions in the longitudinal
et al. [10] used shell theory for an inflatable arch with fixedgirection and an arbitrary periodic function in the meridional di-

boundary conditions to find the deflections when subjected {gction. Then this arbitrary meridional function is explicitly writ-

snow and wind loadings. However, they did not perform the f.ret%n in two separate groups to demonstrate the independent sym-

vibration _analysis. Lieping11] prgsented free vibration analysis etric and antisymmetric modes of vibration using Fourier series
of a toroidal membrane under internal pressure. He solved . ) . '
governing equations using a finite difference method and obtainff /S describe the procedure to derive the standard eigenvalue

problem, which provides the natural frequencies and mode shapes.

First, a special case of circular cylinder without pressure is con-
" *Corresponding author. Phs#1-540-231-4709, Fax:1-540-231-2903, E-mail: Sidered. Thereafter, the inflated torus is analyzed. In both cases,
dingant%\/tiegus the Technical Commit Vibrat 4 Sound for publicati the results are compared with published ones. A detailed analysis
in the Journal of ibration and Acoustcs. Manuscript received April 2001 revisedll Mode shapes and natural frequencies is presented for an inflated
January 2002. Associate Editor: J. Wickert. torus with free boundary conditions.
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Finally, we conduct a parametric study to see the effects of aspeatvilinear coordinates in the meridional and longitudinal direc-
ratio (ratio of the two radij, pressure, and thickness on the naturalons, respectively, and let be the radial direction. The Lame
frequencies. parameter# , andAg and the principal radii of curvaturés, and

R are as followgPlaut et al[10]):

2 Shell Geometry and Initial Stress Resultants

A,=r, Ag=1+rkcos¢ (1)
The middle surface of the toroidal shell is generated by the
revolution of a circle of radius with its center at a distanc 1
(=1/x) from the axis of revolution(Fig. 1). Let ¢ ands be the Ry=r, Re=r+ < COSeh @

The in-plane stress resultanté,, Ng, and Ny =Ny, (Fig.
A 2(a)) associated with the constant internal pressuean be ob-
tained by solving the following three equatiofBudiansky[14]):

I(ALNL)  I(AN" A IA
( ¢ s)+ ( S d)s) s N’ d):O (3)

Js Er) Sap ¢ os

I(ANy) ANy dA, A
«> a6 s Nesgs Negg =0 “)

ST 2r

N, NG
R—¢+ﬁszp ®)

where p is the constant internal pressure. Since the toroidal
shell and the loading due to the internal pressure are axisymmet-
ric, Egs. (3)—(5) can also be written in axisymmetric form. In
< > order to solve the above static equations, we observe that due
R (=1/x) to this axisymmetric propertwfﬁszo andd(-)/9s=0. In addi-
tion, the stress resultants should be continuous along the tube.
(@ Using these conditions, the following expressions for the stress
resultants can be obtained for a torus of constant circular cross-
Fig. 1 Geometry of the torus (not to scale ): (a) side view (b) section:

section A-A
Ky s
- N,
Ny \< Nyg
dn qs
N, os Ngs
q
N 5¢7\ N, ¢
Ny P
(a) Initial in-plane stress resultants (b) In-plane stress resultants and
and the pressure inside the torus external loadings
Mg

MS

My

M g

MW}?\ ¢
(c) Bending and twisting moment
resultants
Fig. 2 Initial stresses, stress and moment resultants, and loads
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r (2+rkcos r 19 19 A )
qu:p_( K—d)) , N;:p_' :{)S:O (6) 7A¢ASN;S(_£‘5+_£37&_‘7L£AS

2 (1+rkcosg) 2 As 08 Ay dp AN ds AAs dd
These initial in-plane stress resultaritg; , Ng, andNY,) due to 1 1 1 1) vy (&8s 1B
the internal pressurép) are also called prestresses and will be ™~ R_¢_§s Bat R_¢+§s B ~AAN; ﬁS+KSE
used in the governing equations.

By A _ .
+ KAS% +A¢A$p(8¢+83)—A¢As(phW_qn) (10)

3 Governing Equations wherep is the density3,,, Bs, andg, are the rotations defined in

_ ) the next section, and,(¢,s,t), us(¢,s,t), andw(¢,s,t) are the

3.1 Equilibrium. The in-plane stress resultanl,, Ns, mid-surface displace?ﬁents in thi s, andn directions, respec-
Ns 4, andNge) and the bending and twisting moment resultantgely. In order to solve Eqg8)—(10), they are expressed in terms
(Mg, Mg, Mgy, andM,) are shown in Figs. ®) and 2¢) of the three mid-surface displacements. For a complete torus, the
respectively.qy, ds, andq, are the surface traction forces pefyoyndary conditions are simply the continuity conditions.
unit area along thé, s, andn coordinates, respectively. The trans-
verse shear resultants are not shown as they are replaced with
equivalent expressions in the equilibrium equations. The modified3.2  Strain-Displacement ~Relationships (Sanders [13]).
membrane shear resultant and modified twisting moment resultét €4 andes be the in-plane extensional strains, andsgtand

are defined agSanderg13]) be the bending strains. The in-plane shearing strair,isand the
twisting strains arec,s and s, . The modified twisting strain is
~ 1 ~ 1 defined as
N¢s:§(N¢s+Ns¢)‘ M¢s:§(M¢s+Ms¢), (7)
_ 1
respectively. Equilibrium equations including the prestresses K¢57§(K¢S+ Ks4) (11)

r r r H . .
(N, Ng, and Ny are given by the following three equationsy, | rotationsB,, Bs, andB, are defined as

(Budiansky[14]):
- u, 1 ow us 1 ow
ANgAS)  d(NgA,) A, Nﬁ_ASJrié(M¢AS) B¢:R—¢—A—¢£, Ps=R. A ds
EY) Js 95 Cap Ry ¢
~ ~ 1 Ta(AUs)  (Agug) (12)
L WAy Fys iRy Mg 3R Ay 0 PramAlTae s
Ry ds Ry 95 Rydd 20 The strain-displacement relationships are as follows:
- 1 dey  vgs IRy 10 1 A
x| M ———))+A ANf<——"’ —2 _ T M P+ N
¢s R, R. Zacr) A, 0 AAs ds g4 A, 30 +A¢AS s ug+ R, (13)
By (1 Jey  Yys 3As) 19 1 A
— 22 2A AN | — —2— — M 2 R W
B ¢ gs As ds  AuA 9 £q A. Js + AA: Eys Uyt R. (14)
1 9 g4—&s) A 10
+A¢ASN;(— Vos , (Fo7E5) s —ﬁ) T N N e Y- T BT
2As s AyAs dop A ds ¢s AgA Sad ¢ s gs ¢ ap S
+PBAA—AA(phU,—ay) ®) 198, 1 A,
B Ky=m ot —2p (16)
INAG)  oNgh) o A N P 1 AMAy) Ay dp  AgAs s T°
s ) *Sop Pas Ry ds . 1aBs 1 9A an
S

N T
1[( 1 dBs 1 3By Bg A,

+1(9|\7I¢SAS M 45 IA M¢ﬂA¢+AS 3
R, d¢ R, d¢ R ds 2 d¢

Kgs=5

__+__ E—
(A e o a2 705, es A B 2[\A, 06 " As ds  AyAg ds
Re Ry 7?7 TS Ag s AA 9 R B (9—AS+B 1 1 (18)
AAs ¢ "MRs R,

oA AN DB Yos PRol p | = DY
s Vgs Ay dp  AgAg Js ¢ V¢ 2A; 9 3.3 Constitutive Law. The material is assumed to be elastic
and isotropic. The constitutive laws, which relate the stress mea-
. sures to the strain measures, are given by the following equations
+szA¢As:A¢>As(PhUs_q$) (Sanderg13)): g y ged

L (esmey) 0Ay L 0By
AAs ds A, d¢

9) ~ K(1-v»)
_ N¢:K(8¢,+ VSS) NS:K(8$+ Vsd)) NﬁbS:T 'yd,s
] 1 |dM4A))  d(MyAy) A, dAs (19)
g |Asl g 9s S 9s Sa¢ - B
B My=D(k4tvrs) Mg=D(kstvi,) My=D(1—v)kys
d | 1|d(MAy) (M 4As) i A M A,
* s | Ag Js " d¢ S 9¢ ¢ 9s wherev is Poisson’s ratio anl andD are the membrane stiffness
and the bending stiffness, respectivédyandD can be written in
_ %Jr S AL A= ALAN' (8_¢+ iﬂ Bs ﬂ) terms of Young’s modulu$E), Poisson’s ratidv), and the thick-
Ry Rs ¢s T Ry Ay dp  AyAs s ness of the sheilh) as follows:
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Eh Eh3 Galerkin's methodSoedel[15], Leung and Kwok 7]). We can
K= -2 D= W (21)  write the resulting equations in the following matrix form:

-V
L ,®+\md=0 (32)

4 Solution Method ) ) _ . .
where\ = ? andL 4 is a matrix of the differential operators if

For the free vibration problem we drop the external loadingpe matriced, andm and the displacement vectdr are given
terms in the Egs(8)—(10). The governing equations in terms ofy, ¢

the displacement fields can be obtained by substituting the strain-

displacement relationships, Eq&l3)—(18), in the constitutive 1 112 l13g

laws, Egs.(19—(20), and then substituting these stresses in the | | |

Egs. (8)—(10). The resulting equations can be written in the fol- Ly=|"26 lo2o l23g |,

lowing form: l31p  la2p  laap
li{ugh+11dust + 11w} — AyAsphtl, =0 (22) AsAsph 0 0 U ()
LogfUgb+ oo ugt+ og{w} — A jAgphiig=0 (23) m= 0 AgAsph 0 |, ®={ Vo)

Wy(¢)

los{ugh s} oo}~ AAGRI=0  (24) ° 0 A ")

where I;; (i,j=1.2,3) are the linear differential operatorsyye consider the integral statement of the system of differential

For harmonic vibration we can eliminate the time dependency %uations

writing '
uy(h,st)=U(¢,5)e', uye,st)=V(¢p,s)e",

w(¢,s,t)=W(¢,s)e'

(25) f Q[cpgl_ 4P+ AP MP]dQ=0 (34)

_ _ where(} is the domain in which the system of differential equa-
where o is the natural frequency. Assume that the displacemefiéns is to be satisfiedp, is an arbitrary weighting function vec-
functions (U,V,\W can be separated spatially in the followingor, and the superscript denotes the transpose of a matrix.

forms: Choosing the arbitrary weighting functieh, as a variation ofp,
denoted byod, t
U(6.9)=Uy($)UyS), V($,5)=Vy(h)Vy(s), enoted byol, we ge
2
W(¢,5)=W4()Wy(S) (26) f [6DTL 40+ NP MP]dp=0 (35)
0

The equilibrium equations can be reduced to a set of ordinary . _ .
differential equations if the motion is assumed to be composed ofMcGill [4] showed that the deflection function of a torus could
complete waves in the form of sine and cosine functions in tH® constructed of solutions such that either

longitudinal direction. To this end, we replace the displacement . . i
functionsU(s), V(s), andWu(s) in Eq. (26) by either (@ V(g:5) and () are even andi(4.s) is odd with re

ns ns ns (b) V(¢,s) andW(¢,s) are odd andJ(¢,s) is even with re-
Us(s)zsin< E)’ V(s)= —cos( E)’ Ws(s)zsin( E) 27) spect to¢p=0 andr.
or The modes of typéa) are called symmetric modes, because they

yield a symmetric picture of a meridional cross-section with re-
ns ns ns spect togp=0 and (Fig. 3(@)). Similarly, mode shapes of tyjib)
Us(s)=c05< E)’ Vs(s)=sin(ﬁ , Wy(s)= COS( E)' (28) are denoted as antisymmetric modes because of the antisymmetric
pattern with respect tep=0 and# (Fig. 3(b)). These two groups
After above substitutions, we divide Eq®2), (23), and(24) by of vibration modes can be analyzed independently. It is also evi-
Ug(s), V4(s), andW(s), respectively. Heran, called the wave dent that the displacement function must be a continuous periodic
number, is an integer ant 0. In fact, whem+ 0, substitution of function with continuous periodic derivatives of the same period
Eqs.(27) or (28) will yield the same natural frequencies but twan ¢. HenceU 4(¢), V4 (), andW,(¢) can be represented by
independent mode shapes related to each other by a rotation. Fewrier series. Taking a finite number of tertng in the Fourier
n=0, Egs.(27) and (28) will yield different natural frequencies. series, we can write the symmetric part as
Mode shapes corresponding me=0 in Egs.(27) and (28) are

m m-1
called axisymmetric modes. The mode shapes corresponding to s _ S i N s .
Eq. (27) and n=0 are also called dilationless circumferential Ucb(d’)_zl Aisinlig) Vy(é)= ;) BF cogi¢)
modes or purely torsional modes. Now we can write Egg)—
(24) as El
WE( )= C;cogi 36
136U ()} 112V S+ 10 Wo( )} + A APN62U () AP~ gy Creoid) o
=0 (29) where superscripg denotes the symmetric part. Similarly, we can
5 write the antisymmetric part as
L2168V g (D)} 12261V ()} + 1235 Wy (D)} + AgAsphwV 4 () o -
=0 (30) Us(9)= 2 ATcosio) Vi(h)= 2, Blsinig)
I3150U ()} 1326 {V ()} + 133 Ws( )} + A jAsph W () N
=0 (31) W(4)=2, Clsinli ) (37)

wherel;;, (i,j=1,2,3) can be derived fro; using the above
procedure. The resulting Eq$29)—(31) are linear differential where superscript denotes the antisymmetric part. Thus the vec-
equations with variable coefficients inand can be solved using tor ® can be written as
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(a) Symmetric deformation
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(b) Antisymmetric deformation

Fig. 3 Symmetrically and antisymmetrically deformed cross-
sections of the torus. Solid lines are the deformed cross-
sections and dotted lines are the undeformed cross-sections
and axes.

®=fa (38)

wherea is the vector of unknown coefficients’, BY, andC; in
the symmetric caséd?, BY, andC? in the antisymmetric case
(i=1,2,.m), andf is a matrix so thaf a gives the displacement

vector® in Eq. (38). Now we can write Eq(35) as

2w
f [8a"fTL sfa+\sa'fTmfa]dp=0 (39)
0
Since éa is arbitrary, we have
2w
f [fTL sfa+ NfTmfaldp=0 (40)
0

Journal of Vibration and Acoustics

The above equation after integration can be written in the follow-
ing matrix form:

(A+AB)a=0 (41)
where the matriced andB are given by
27 2
A= f flL,fdg, B= f fTmfd¢ (42)
0 0

Equation(41) is an eigenvalue problem. The eigenvalués the
square of the natural frequency, and the eigenveztgives the
vibration mode shape.

5 Numerical Result

Now we present a few numerical examples to demonstrate the
method described above. The frequencies mentioned in this sec-
tion are non-rigid-body frequencies. The rigid-body frequencies
are described in the next section.

5.1 Cylindrical Shell. First, we consider a special case of
torus where the radiuR of the torus(Fig. 1(a)) becomes very
large compared to the radinof the cross-section of the torus, so
that the geometry of the toroidal shell becomes close to that of a
circular cylinder. For this special case, we also assume that the
internal pressurép) is zero(Table 1. The results are compared
with the exact natural frequenciékeissa[16]). The shear dia-
phragm boundary condition is assumed. The length of the cylinder
is taken to berR so that the boundary conditions are satisfied
exactly by the displacement function in the longitudinal direction
(Eg. (27)). Table 2 shows the natural frequencies calculated using
this analysis and the exact solution. Since the exact solution was
also obtained using Sanders’ theory, the results show perfect
agreement. In this case, the symmetric and antisymmetric vibra-
tions give the same natural frequencies. This is because a circular
cylinder possesses symmetry in the meridional direction and
hence the symmetric and antisymmetric modes are related to each
other simply by a rotation. However, some vibration modes, e.g.,
torsional vibration modes, can only be predicted by antisymmetric
modes. Since every term in the displacement functtegs. (36)
and (37)) constitutes a mode shape for a circular cylinder, the
convergence is independent of the number of terms taken in the
series.

5.2 Toroidal Shell. In this section, we present the natural
frequencies and mode shapes of an inflated torus. First, we com-
pare the natural frequencies with those given in Liepird. The
results will be shown in terms of the following nondimensional
quantities:

2
_r _pr _pl’ 2
nfR! nghr /'LfE,”Zw

wherey, {, andu denote the aspect ratio, prestress parameter, and
frequency parameter, respectively. Table 3 shows valueg of
when »=0.3 and{=0.002 for different wave numbers. The natu-
ral frequency shown corresponds to the first mode in each case.
The results match closely. The reasons for the small differences
may be numerical inaccuracies or the fact that Liepirid uses a
finite difference method whereas we use Fourier series.

(43)

Table 1 Data for the geometry and material of the cylinder

Parameter Values
Elastic modulus E, Pa 2.07x10"
Thickness k2, m 0.01
Poisson’s ratio v 0.3
Density p, kg/m’ 7800
Length L, m 7.62
Radius of the cross-section r, m 1.219
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Table 2 Comparison of natural frequencies for the cylinder

Axial wave number,
Mode cirenmferential wave Frequency from Exact values (Hz)
number number () this analysis (Hz) (Leissa [16])
1 1,2 591 591
2 1,1 11.76 11.76
3 1,3 12.83 12.83
4 2,3 14.67 14.67
S 2,2 15.65 15.65
6 3,3 20.52 20.52
7 1,4 24.35 24.35
Table 3 Comparison of natural frequencies for the inflated torus (»=0.3 and
¢=0.002)
Wave number (n), Symmetry | Frequency parameter from this Frequency parameter
(First mode) analysis (u) from Liepins {11] ()
0, symmetric 0.40 0.39
0, antisymmetric 0.04 0.04
1, symmetric 0.39 0.38
1, antisymmetric 0.23 0.23
2, symmetric 0.05 0.05
2, antisymmetric 0.04 0.04

The above two comparisons demonstrate that the results fr¢m=0) and at a high wave numben£4). Figure 6 shows the
this analysis are accurate. Following a similar procedure, one cétanges in natural frequencies as the aspect rafiR) (of the
also calculate the natural frequencies and mode shapes for h&is changes for the case mf 0. As the aspect ratio increases,
torus without pressure by setting all the prestress and pressftegjuencies decrease. It can be seen that the rate of decrease is
terms in the governing equations to zero. very high up to an aspect ratio of 0.1. Also, the symmetric and
A candidate for the material of an inflatable structure iantisymmetric frequencies are close to each other except for the
Kapton ®. Since an inflatable structure is the main interest @fst frequency at low aspect ratios. Compared to the frequencies
this work, we use this material for the analysis hereafter. Tablead a low aspect ratio, we see that the frequencies are more closely
shows the data for the geometry and material of the inflatabdpaced at a high aspect ratio. Basically, at high aspect ratio the
torus. natural frequencies occur in clusters and the there are several
The mode shapes and the corresponding natural frequenciesraggles near any frequency. On the other hand, for low aspect ratio
shown in Figs. 4 and 5. These figures also show the projectionstgé natural frequencies and mode shapes are widely separated.
mode shapes on a plane. Modes 1, 4, and 7 are the out-of-pl@gure 7 shows the plot of the natural frequencies against the
bending modes. These modes resemble the bending modes aggect ratio fon=4. Unlike the frequencies far=0, we see that
free-free beam and produced by the antisymmetric modes. Alse first frequency of both the symmetric and the antisymmetric
the modes 3, 6, 10, and 11 are of antisymmetric type. Modes 2,rhodes increases up to an aspect ratio of around 0.26. Again, at
8, 9, and 12 are symmetric modes. In mode 2, the torus vibralegy aspect ratio the frequencies are wide apart contrary to the
by forming elliptical shape. Similarly, in modes 5 and 9, it formsehavior at high aspect ratio. Figure 8 shows the effect of pressure
triangular and square shape. Modes 3 and 8 are axisymmetfi¢ on the natural frequencies. As expected, the frequencies in-
modes. In an axisymmetric mode, the shape does not chargease with the internal pressure. This is because of the increase in
along 6, but the cross-section deforms either antisymmetrically,
called the axisymmetric antisymmetric mo¢lmode 3, or sym-
metrically, called the axisymmetric symmetric mo¢mode §.
The complexities of mode shapes increase with an increase in thefable 4 Data for the geometry and material of the torus

aspect ratio (/R). For a low aspect ratio torus, the ring types of Parameter Values
modes dominate the lower modes. On the other hand, for a torus Elost Solus B N2 755107
of very high aspect ratio, the local deformation of the meridional ashe modufus & A X
curve(cross-sectiondominates even in the lower modes. We also Thickness h, m 76.2x10°°
note that since the thickness of the structure is very small, bending —
. . . . Poisson’s ratio v 0.34

moments in the governing equations can be neglected since they
are very small compared to the in-plane stresses. Density p, kg/m’ 1418

Now we con5|de_r the effects of various quantities on t_he nat_ural Radius of torus R, m 762
frequencies of the inflated torus. Parameters, one at a time, will be
changed from the values given in Table 4, and the corresponding | Radius of the cross-section r, m 122
frequencies Wi_II be calculated and plott_ed. To study the effect of Tntemnal prossure p, N/m? 1723.69
the aspect ratio, we consider frequencies at a low wave number
392 / Vol. 124, JULY 2002 Transactions of the ASME
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Mode 1 (6.53 Hz) Mode 2 (6.77 Hz)
1¥ out-of-plane bending mode 1*" in-plane bending mode

Mode 3 (15.80 Hz) Mode 4 (16.71 Hz)
1* axi symmetric mode (antisymmetric) 2" out-of-plane bending mode

Mode 5 (17.40 Hz) Mode 6 (22.72 Hz)
2nd in-plane bending mode 4 antisymmetric mode

Fig. 4 Mode shapes of the inflated torus
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Mode 8 (27.76 Hz)
2" axisymmetric mode (symmetric)

Mode 7 (27.66 Hz)
c out-of-plane bending mode

Mode 9 (28.42 Hz) Mode 10 (31.32 Hz)
3™ in-plane bending mode 6" antisymmetric mode

Mode 11 (32.85 Hz) Mode 12 (33.08 Hz)
7™ antisymmetric mode 5" symmetric mode

Fig. 5 Mode shapes of the inflated torus
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stiffness with the increase in pressure. In an inflatable structusmmplete sine and cosine waves in the longitudinal direction. This
the major source of the stiffness is its internal pressure. The raterefluces the governing partial differential equations to a set of
increase in the frequencies is not constant throughout the pressandinary differential equations in the meridional coordinate
range. First the natural frequencies increase rapidly, and thereaftéich was solved using Galerkin’'s method to obtain the mode
they increase slowly or remain nearly constant. Figure 9 is a plsttapes and the natural frequencies. The displacement functions in
of the natural frequencies vs. thicknes$s of the torus. Initially ¢ were written in two groups, called the symmetric and antisym-
the frequencies decrease quickly and later they decrease slowlgtric modes, using Fourier series. First, we calculated the natural

with the wall thickness of the torus. frequencies for a cylinder without pressure, which is a special
o case. The results were found to match the exact solution. Then the
6 Rigid-Body Modes case of an inflated torus was considered and the results were again

Since the boundary conditions of the inflated torus afgPmpared with existing ones. The mode shapes and natural fre-
free, it shows six rigid-body modes corresponding to six zef@encies were presented. Flnally_, a parametric study was done to
natural frequencies. Of the six rigid body motions, three are tranlow the effects of the aspect ratio, pressure, and thickness on the
lations and the other three are the rotations about the three g&iiural frequencies corresponding to different mode shapes. The
pendicular axes. It is worth noting here that one of the main afatural frequencies were found to be mostly decreasing with an
vantages of using Sanders’ shell theory is that, unlike Love’s shélfrease in thickness and aspect ratio. However, with an increase
theory, strains do vanish for all six small rigid-body motions. Thé Pressure, the frequencies were found to be increasing. In all
following displacement functions give rise to the rigid bod);hese cases, the change is high initially and then it becomes slow.
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