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Free Vibration Analysis of an
Inflated Toroidal Shell
Free vibration analysis of a free inflated torus of circular cross-section is presented.
shell theory of Sanders, including the effect of pressure, is used in formulating the
erning equations. These partial differential equations are reduced to ordinary differe
equations with variable coefficients using complete waves in the form of trigonom
functions in the longitudinal direction. The assumed mode shapes are divided into
metric and antisymmetric groups, each given by a Fourier series in the meridional c
dinate. The solutions (natural frequencies and mode shapes) are obtained using G
kin’s method and verified with published results. The natural frequencies are also obt
for a circular cylinder with shear diaphragm boundary condition as a special case of
toroidal shell. Finally, the effects of aspect ratio, pressure, and thickness on the na
frequencies of the inflated torus are studied.@DOI: 10.1115/1.1467650#
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1 Introduction
Use of an inflated structure in an aerospace application g

back to the early 1960’s and the ECHO series of satellites~Mal-
one and Crawford@1#!. Inflatable structures have been the subj
of renewed interest in recent years for space applications suc
communication antennas, solar thermal propulsion, and spac
lar power. The major advantages of using inflatable structure
space are their extremely low weight, on-orbit deployability, a
subsequent space saving in launching. An inflated torus is a
component of many inflated structure designs~Dornheim@2#! that
serves as structural support for optical systems such as a
membrane reflector or a Fresnel lens. In the design of thin ela
shell structures, it is important to know their dynamic behavior
well as their load carrying ability. The dynamic behavior is p
ticularly important for satellite structures since they are subjec
to a variety of time-varying loadings. The free vibration study
needed in order to obtain the natural frequencies and the m
shapes, which are required for the forced vibration analysis.

Free vibration of toroidal shells without pressure has been s
ied by many researchers, for example, Kordes@3#, McGill @4#,
Kosawada et al.@5#, Fang@6#, and Leung and Kwok@7#. How-
ever, there have been few studies on the toroidal shell subject
pressure. Jordan@8# predicted the vibratory frequencies using t
Rayleigh quotient and performed experiments. Saigal et al.@9#
found an analytical solution of a prestressed toroidal membr
with fixed boundary conditions. He assumed that the in-plane
placement components are zero and the radius of the torus is
large compared to the radius of its cross-section. The results
valid only for a special case of a torus due to the strong assu
tions made in order to simplify the governing equations. Pl
et al. @10# used shell theory for an inflatable arch with fixe
boundary conditions to find the deflections when subjected
snow and wind loadings. However, they did not perform the f
vibration analysis. Liepins@11# presented free vibration analys
of a toroidal membrane under internal pressure. He solved
governing equations using a finite difference method and obta
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the frequencies and mode shapes by a trial and error method i
Holzer fashion. Lewis@12# analyzed an inflated toroidal structur
using finite element analysis. This work uses Galerkin’s meth
along with Fourier series, rather than the finite difference meth
or the finite element method, for the free vibration analysis of
inflated toroidal shell.

The goal of the present paper is to perform a free vibrat
analysis of an inflated torus with free boundary conditions. It
assumed that the cross-section is circular, the thickness is unif
and the material is linearly elastic and isotropic. We assume
the pressure remains constant while the torus is vibrating. We
a modified Sanders’ shell theory~Sanders@13#, Budiansky@14#!.
Modifications involve inclusions of the geometric nonlinearity
the in-plane strains in conjunction with prestresses. Considera
of geometric nonlinearity is important in order to capture the
fects of pressure. The nonlinearity is considered only with
prestresses so that the resulting vibration equations are linear
bending rigidity of the shell is not assumed to be negligible, a
this implies that the method is valid for a large class of she
Initial stresses are assumed to be membrane in nature, i.e.,
form throughout the thickness of the shell.

First, the toroidal shell geometry is described and the ini
stresses due to internal pressure are obtained. Thereafter, the
tions of motion are presented. Since it is very difficult to solve t
governing partial differential equations exactly, we use the Ga
kin’s method. The governing equations are reduced to ordin
differential equations with variable coefficients using comple
waves in the form of sine and cosine functions in the longitudi
direction and an arbitrary periodic function in the meridional d
rection. Then this arbitrary meridional function is explicitly wri
ten in two separate groups to demonstrate the independent
metric and antisymmetric modes of vibration using Fourier ser
We also describe the procedure to derive the standard eigenv
problem, which provides the natural frequencies and mode sha
First, a special case of circular cylinder without pressure is c
sidered. Thereafter, the inflated torus is analyzed. In both ca
the results are compared with published ones. A detailed ana
of mode shapes and natural frequencies is presented for an infl
torus with free boundary conditions.
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Finally, we conduct a parametric study to see the effects of as
ratio ~ratio of the two radii!, pressure, and thickness on the natu
frequencies.

2 Shell Geometry and Initial Stress Resultants
The middle surface of the toroidal shell is generated by

revolution of a circle of radiusr with its center at a distanceR
~51/k! from the axis of revolution~Fig. 1!. Let f and s be the

Fig. 1 Geometry of the torus „not to scale …: „a… side view „b…
section A-A
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curvilinear coordinates in the meridional and longitudinal dire
tions, respectively, and letn be the radial direction. The Lame´
parametersAf andAs and the principal radii of curvaturesRf and
Rs are as follows~Plaut et al.@10#!:

Af5r , As511rk cosf (1)

Rf5r , Rs5r 1
1

k cosf
(2)

The in-plane stress resultantsNf
r , Ns

r , and Nfs
r 5Nsf

r ~Fig.
2~a!! associated with the constant internal pressurep can be ob-
tained by solving the following three equations~Budiansky@14#!:

]~AfNs
r !

]s
1

]~AsNfs
r !

]f
1Nfs

r
]As

]f
2Nf

r
]Af

]s
50 (3)

]~AsNf
r !

]f
1

]~AfNfs
r !

]s
1Nfs

r
]Af

]s
2Ns

r
]As

]f
50 (4)

Nf
r

Rf
1

Ns
r

Rs
5p (5)

where p is the constant internal pressure. Since the toroi
shell and the loading due to the internal pressure are axisym
ric, Eqs. ~3!–~5! can also be written in axisymmetric form. I
order to solve the above static equations, we observe that
to this axisymmetric propertyNfs

r 50 and ](•)/]s50. In addi-
tion, the stress resultants should be continuous along the t
Using these conditions, the following expressions for the str
resultants can be obtained for a torus of constant circular cr
section:
Fig. 2 Initial stresses, stress and moment resultants, and loads
Transactions of the ASME
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r 5

pr

2

(21rk cosf)

(11rk cosf)
, Ns

r5
pr

2
, Nfs

r 50

These initial in-plane stress resultants~Nf
r , Ns

r , andNfs
r ! due to

the internal pressure~p! are also called prestresses and will
used in the governing equations.

3 Governing Equations

3.1 Equilibrium. The in-plane stress resultants~Nf , Ns ,
Ns f , andNfs! and the bending and twisting moment resulta
~Mf , Ms , Ms f , and Mfs! are shown in Figs. 2~b! and 2~c!
respectively.qf , qs , and qn are the surface traction forces p
unit area along thef, s, andn coordinates, respectively. The tran
verse shear resultants are not shown as they are replaced
equivalent expressions in the equilibrium equations. The mod
membrane shear resultant and modified twisting moment resu
are defined as~Sanders@13#!

Ñfs5
1

2
~Nfs1Ns f!, M̃fs5

1

2
~Mfs1Ms f!, (7)

respectively. Equilibrium equations including the prestres
~Nf

r , Ns
r , and Nfs

r ! are given by the following three equatio
~Budiansky@14#!:

]~NfAs!

]f
1

]~ÑfsAf!

]s
1Ñfs

]Af

]s
2Ns

]As

]f
1

1

Rf

]~MfAs!

]f

1
1

Rf

]M̃fsAf

]s
1

M̃fs

Rf

]Af

]s
2

Ms

Rf

]As

]f
1

Af

2

]

]s

3S M̃fsS 1

Rf
2

1

Rs
D D1AfAsNf

r S 1

Af

]«f

]f
1

gfs

AfAs

]Af

]s

2
bf

Rf
D12AfAsNfs

r S 1

As

]«f

]s
2

gfs

AfAs

]As

]f D
1AfAsNs

r S 1

2As

]gfs

]s
1

~«f2«s!

AfAs

]As

]f
2

1

As

]bn

]s D
1pbfAfAs5AfAs~rhüf2qf! (8)

]~NsAf!

]s
1

]~ÑfsAs!

]f
1Ñfs

]As

]f
2Nf

]Af

]s
1

1

Rs

]~MsAf!

]s

1
1

Rs

]M̃fsAs

]f
1

M̃fs

Rs

]As

]f
2

Mf

Rs

]Af

]s
1

As

2

]

]f

3F S 1

Rs
2

1

Rf
D M̃fsG1AfAsNs

r S 1

As

]«s

]s
1

gfs

AfAs

]As

]f
2

bs

Rs
D

12AfAsNfs
r S 1

Af

]«s

]f
2

gfs

AfAs

]Af

]s D1AfAsNf
r S 1

2Af

]gfs

]f

1
~«s2«f!

AfAs

]Af

]s
1

1

Af

]bn

]f D1pbsAfAs5AfAs~rhüs2qs!

(9)

]

]f H 1

Af
F ]~MfAs!

]f
1

]~M̃fsAf!

]s
1M̃fs

]Af

]s
2Ms

]As

]f
G J

1
]

]s H 1

As
F ]~MsAf!

]s
1

]~M̃fsAs!

]f
1M̃fs

]As

]f
2Mf

]Af

]s
G J

2S Nf

Rf
1

Ns

Rs
DAfAs2AfAsNf

r S «f

Rf
1

1

Af

]bf

]f
1

bs

AfAs

]Af

]s D
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2AfAsNfs
r S 1

As

]bf

]s
1

1

Af

]bs

]f
2

bf

AfAs

]Af

]s
2

bs

AfAs

]As

]f

2S 1

Rf
2

1

Rs
Dbn1S 1

Rf
1

1

Rs
D gfs

2 D2AfAsNs
rS«s

Rs
1

1

As

]bs

]s

1
bf

AfAs

]As

]f D1AfAsp~«f1«s!5AfAs~rhẅ2qn! (10)

wherer is the density,bf , bs , andbn are the rotations defined in
the next section, anduf(f,s,t), us(f,s,t), andw(f,s,t) are the
mid-surface displacements in thef, s, and n directions, respec-
tively. In order to solve Eqs.~8!–~10!, they are expressed in terms
of the three mid-surface displacements. For a complete torus,
boundary conditions are simply the continuity conditions.

3.2 Strain-Displacement Relationships „Sanders †13‡….
Let «f and«s be the in-plane extensional strains, and letkf and
be the bending strains. The in-plane shearing strain isgfs and the
twisting strains arekfs andksf . The modified twisting strain is
defined as

k̃fs5
1

2
~kfs1ksf! (11)

The rotationsbf , bs , andbn are defined as

bf5
uf

Rf
2

1

Af

]w

]f
, bs5

us

Rs
2

1

As

]w

]s
,

bn5
1

2AfAs
F]~Asus!

]f
2

]~Afuf!

]s G (12)

The strain-displacement relationships are as follows:

«f5
1

Af

]uf

]f
1

1

AfAs

]Af

]s
us1

w

Rf
(13)

«s5
1

As

]us

]s
1

1

AfAs

]As

]f
uf1

w

Rs
(14)

gfs5
1

AfAs
S As

]us

]f
1Af

]uf

]s
2

]Af

]s
uf2

]As

]f
usD (15)

kf5
1

Af

]bf

]f
1

1

AfAs

]Af

]s
bs (16)

ks5
1

As

]bs

]s
1

1

AfAs

]As

]f
bf (17)

k̃fs5
1

2 H S 1

Af

]bs

]f
1

1

As

]bf

]s
2

bf

AfAs

]Af

]s

2
bs

AfAs

]As

]f
1bnS 1

Rs
2

1

Rf
D J (18)

3.3 Constitutive Law. The material is assumed to be elastic
and isotropic. The constitutive laws, which relate the stress me
sures to the strain measures, are given by the following equatio
~Sanders@13#!:

Nf5K~«f1n«s! Ns5K~«s1n«f! Ñfs5
K~12n!

2
gfs

(19)

Mf5D~kf1nks! Ms5D~ks1nkf! M̃fs5D~12n!k̃fs
(20)

wheren is Poisson’s ratio andK andD are the membrane stiffness
and the bending stiffness, respectively.K andD can be written in
terms of Young’s modulus~E!, Poisson’s ratio~n!, and the thick-
ness of the shell~h! as follows:
JULY 2002, Vol. 124 Õ 389
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K5
Eh

12n2 , D5
Eh3

12~12n2!
(21)

4 Solution Method
For the free vibration problem we drop the external load

terms in the Eqs.~8!–~10!. The governing equations in terms o
the displacement fields can be obtained by substituting the st
displacement relationships, Eqs.~13!–~18!, in the constitutive
laws, Eqs.~19!–~20!, and then substituting these stresses in
Eqs. ~8!–~10!. The resulting equations can be written in the fo
lowing form:

l 11$uf%1 l 12$us%1 l 13$w%2AfAsrhüf50 (22)

l 21$uf%1 l 22$us%1 l 23$w%2AfAsrhüs50 (23)

l 31$uf%1 l 32$us%1 l 33$w%2AfAsrhẅ50 (24)

where l i j ( i , j 51,2,3) are the linear differential operator
For harmonic vibration we can eliminate the time dependency
writing

uf~f,s,t !5U~f,s!eivt, us~f,s,t !5V~f,s!eivt,
(25)

w~f,s,t !5W~f,s!eivt

wherev is the natural frequency. Assume that the displacem
functions ~U,V,W! can be separated spatially in the followin
forms:

U~f,s!5Uf~f!Us~s!, V~f,s!5Vf~f!Vs~s!,

W~f,s!5Wf~f!Ws~s! (26)

The equilibrium equations can be reduced to a set of ordin
differential equations if the motion is assumed to be compose
complete waves in the form of sine and cosine functions in
longitudinal direction. To this end, we replace the displacem
functionsUs(s), Vs(s), andWs(s) in Eq. ~26! by either

Us~s!5sinS ns

R D , Vs~s!52cosS ns

R D , Ws~s!5sinS ns

R D (27)

or

Us~s!5cosS ns

R D , Vs~s!5sinS ns

R D , Ws~s!5cosS ns

R D . (28)

After above substitutions, we divide Eqs.~22!, ~23!, and~24! by
Us(s), Vs(s), and Ws(s), respectively. Heren, called the wave
number, is an integer andnÞ0. In fact, whennÞ0, substitution of
Eqs.~27! or ~28! will yield the same natural frequencies but tw
independent mode shapes related to each other by a rotation
n50, Eqs.~27! and ~28! will yield different natural frequencies
Mode shapes corresponding ton50 in Eqs. ~27! and ~28! are
called axisymmetric modes. The mode shapes correspondin
Eq. ~27! and n50 are also called dilationless circumferenti
modes or purely torsional modes. Now we can write Eqs.~22!–
~24! as

l 11f$Uf~f!%1 l 12f$Vf~f!%1 l 13f$Wf~f!%1AfAsrhv2Uf~f!

50 (29)

l 21f$Uf~f!%1 l 22f$Vf~f!%1 l 23f$Wf~f!%1AfAsrhv2Vf~f!

50 (30)

l 31f$Uf~f!%1 l 32f$Vf~f!%1 l 33f$Wf~f!%1AfAsrhv2Wf~f!

50 (31)

where l i j f ( i , j 51,2,3) can be derived froml i j using the above
procedure. The resulting Eqs.~29!–~31! are linear differential
equations with variable coefficients inf and can be solved usin
390 Õ Vol. 124, JULY 2002
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Galerkin’s method~Soedel@15#, Leung and Kwok@7#!. We can
write the resulting equations in the following matrix form:

LfF1lmF50 (32)

wherel5v2 andLf is a matrix of the differential operators inf.
The matricesLf andm and the displacement vectorF are given
by

Lf5F l 11f l 12f l 13f

l 21f l 22f l 23f

l 31f l 32f l 33f

G ,

m5F AfAsrh 0 0

0 AfAsrh 0

0 0 AfAsrh
G , F5H Uf~f!

Vf~f!

Wf~f!
J

(33)

We consider the integral statement of the system of differen
equations:

E
V

@Fa
TLfF1lFa

TmF#dV50 (34)

whereV is the domain in which the system of differential equ
tions is to be satisfied,Fa is an arbitrary weighting function vec
tor, and the superscriptT denotes the transpose of a matri
Choosing the arbitrary weighting functionFa as a variation ofF,
denoted bydF, we get

E
0

2p

@dFTLfF1ldFTmF#df50 (35)

McGill @4# showed that the deflection function of a torus cou
be constructed of solutions such that either

~a! V(f,s) andW(f,s) are even andU(f,s) is odd with re-
spect tof50 andp, or

~b! V(f,s) andW(f,s) are odd andU(f,s) is even with re-
spect tof50 andp.

The modes of type~a! are called symmetric modes, because th
yield a symmetric picture of a meridional cross-section with
spect tof50 andp ~Fig. 3~a!!. Similarly, mode shapes of type~b!
are denoted as antisymmetric modes because of the antisymm
pattern with respect tof50 andp ~Fig. 3~b!!. These two groups
of vibration modes can be analyzed independently. It is also
dent that the displacement function must be a continuous peri
function with continuous periodic derivatives of the same per
in f. HenceUf(f), Vf(f), andWf(f) can be represented b
Fourier series. Taking a finite number of terms~m! in the Fourier
series, we can write the symmetric part as

Uf
s ~f!5(

i 51

m

Ai
s sin~ if! Vf

s ~f!5 (
i 50

m21

Bi
s cos~ if!

Wf
s ~f!5 (

i 50

m21

Ci
s cos~ if! (36)

where superscripts denotes the symmetric part. Similarly, we ca
write the antisymmetric part as

Uf
a ~f!5 (

i 50

m21

Ai
a cos~ if! Vf

a ~f!5(
i 51

m

Bi
a sin~ if!

Wf
a ~f!5(

i 51

m

Ci
a sin~ if! (37)

where superscripta denotes the antisymmetric part. Thus the ve
tor F can be written as
Transactions of the ASME
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F5fa (38)

wherea is the vector of unknown coefficientsAi
s , Bi

s , andCi
s in

the symmetric case,Ai
a , Bi

a , and Ci
a in the antisymmetric case

( i 51,2,...m), andf is a matrix so thatf a gives the displacemen
vectorF in Eq. ~38!. Now we can write Eq.~35! as

E
0

2p

@daTfTLffa1ldaTfTmfa#df50 (39)

Sinceda is arbitrary, we have

E
0

2p

@ fTLffa1lfTmfa#df50 (40)

Fig. 3 Symmetrically and antisymmetrically deformed cross-
sections of the torus. Solid lines are the deformed cross-
sections and dotted lines are the undeformed cross-sections
and axes.
Journal of Vibration and Acoustics
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The above equation after integration can be written in the follo
ing matrix form:

~A1lB!a50 (41)

where the matricesA andB are given by

A5E
0

2p

fTLffdf, B5E
0

2p

fTmfdf (42)

Equation~41! is an eigenvalue problem. The eigenvaluel is the
square of the natural frequency, and the eigenvectora gives the
vibration mode shape.

5 Numerical Result
Now we present a few numerical examples to demonstrate

method described above. The frequencies mentioned in this
tion are non-rigid-body frequencies. The rigid-body frequenc
are described in the next section.

5.1 Cylindrical Shell. First, we consider a special case
torus where the radiusR of the torus~Fig. 1~a!! becomes very
large compared to the radiusr of the cross-section of the torus, s
that the geometry of the toroidal shell becomes close to that
circular cylinder. For this special case, we also assume that
internal pressure~p! is zero ~Table 1!. The results are compare
with the exact natural frequencies~Leissa@16#!. The shear dia-
phragm boundary condition is assumed. The length of the cylin
is taken to bepR so that the boundary conditions are satisfi
exactly by the displacement function in the longitudinal directi
~Eq. ~27!!. Table 2 shows the natural frequencies calculated us
this analysis and the exact solution. Since the exact solution
also obtained using Sanders’ theory, the results show per
agreement. In this case, the symmetric and antisymmetric vi
tions give the same natural frequencies. This is because a circ
cylinder possesses symmetry in the meridional direction
hence the symmetric and antisymmetric modes are related to
other simply by a rotation. However, some vibration modes, e
torsional vibration modes, can only be predicted by antisymme
modes. Since every term in the displacement function~Eqs. ~36!
and ~37!! constitutes a mode shape for a circular cylinder, t
convergence is independent of the number of terms taken in
series.

5.2 Toroidal Shell. In this section, we present the natur
frequencies and mode shapes of an inflated torus. First, we c
pare the natural frequencies with those given in Liepins@11#. The
results will be shown in terms of the following nondimension
quantities:

h5
r

R
, z5

pr

Eh
, m5

rr 2

Eh2 v2 (43)

whereh, z, andm denote the aspect ratio, prestress parameter,
frequency parameter, respectively. Table 3 shows values om
whenh50.3 andz50.002 for different wave numbers. The nat
ral frequency shown corresponds to the first mode in each c
The results match closely. The reasons for the small differen
may be numerical inaccuracies or the fact that Liepins@11# uses a
finite difference method whereas we use Fourier series.

Table 1 Data for the geometry and material of the cylinder
JULY 2002, Vol. 124 Õ 391
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Table 2 Comparison of natural frequencies for the cylinder

able 3 Comparison of natural frequencies for the inflated torus „hÄ0.3 and
Ä0.002…
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The above two comparisons demonstrate that the results
this analysis are accurate. Following a similar procedure, one
also calculate the natural frequencies and mode shapes fo
torus without pressure by setting all the prestress and pres
terms in the governing equations to zero.

A candidate for the material of an inflatable structure
Kapton ®. Since an inflatable structure is the main interest
this work, we use this material for the analysis hereafter. Tab
shows the data for the geometry and material of the inflata
torus.

The mode shapes and the corresponding natural frequencie
shown in Figs. 4 and 5. These figures also show the projection
mode shapes on a plane. Modes 1, 4, and 7 are the out-of-p
bending modes. These modes resemble the bending modes
free-free beam and produced by the antisymmetric modes. A
the modes 3, 6, 10, and 11 are of antisymmetric type. Modes
8, 9, and 12 are symmetric modes. In mode 2, the torus vibr
by forming elliptical shape. Similarly, in modes 5 and 9, it form
triangular and square shape. Modes 3 and 8 are axisymm
modes. In an axisymmetric mode, the shape does not ch
along u, but the cross-section deforms either antisymmetrica
called the axisymmetric antisymmetric mode~mode 3!, or sym-
metrically, called the axisymmetric symmetric mode~mode 8!.
The complexities of mode shapes increase with an increase in
aspect ratio (r /R). For a low aspect ratio torus, the ring types
modes dominate the lower modes. On the other hand, for a t
of very high aspect ratio, the local deformation of the meridio
curve~cross-section! dominates even in the lower modes. We al
note that since the thickness of the structure is very small, ben
moments in the governing equations can be neglected since
are very small compared to the in-plane stresses.

Now we consider the effects of various quantities on the nat
frequencies of the inflated torus. Parameters, one at a time, wi
changed from the values given in Table 4, and the correspon
frequencies will be calculated and plotted. To study the effec
the aspect ratio, we consider frequencies at a low wave num
02
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(n50) and at a high wave number (n54). Figure 6 shows the
changes in natural frequencies as the aspect ratio (r /R) of the
torus changes for the case ofn50. As the aspect ratio increase
frequencies decrease. It can be seen that the rate of decrea
very high up to an aspect ratio of 0.1. Also, the symmetric a
antisymmetric frequencies are close to each other except for
first frequency at low aspect ratios. Compared to the frequen
at a low aspect ratio, we see that the frequencies are more clo
spaced at a high aspect ratio. Basically, at high aspect ratio
natural frequencies occur in clusters and the there are sev
modes near any frequency. On the other hand, for low aspect
the natural frequencies and mode shapes are widely separ
Figure 7 shows the plot of the natural frequencies against
aspect ratio forn54. Unlike the frequencies forn50, we see that
the first frequency of both the symmetric and the antisymme
modes increases up to an aspect ratio of around 0.26. Agai
low aspect ratio the frequencies are wide apart contrary to
behavior at high aspect ratio. Figure 8 shows the effect of pres
~p! on the natural frequencies. As expected, the frequencies
crease with the internal pressure. This is because of the increa

Table 4 Data for the geometry and material of the torus
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Fig. 4 Mode shapes of the inflated torus
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Fig. 5 Mode shapes of the inflated torus
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Fig. 6 The first five natural frequencies vs. the aspect ratio of
„a… symmetric modes and „b… antisymmetric modes corre-
sponding to nÄ0
Journal of Vibration and Acoustics
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Fig. 7 The first five natural frequencies vs. the aspect ratio of
„a… symmetric modes and „b… antisymmetric modes corre-
sponding to nÄ4
Fig. 8 Effect of the internal pressure on the first ten natural frequencies of
the inflated torus

Fig. 9 Effect of the thickness on the first ten natural frequencies of the
inflated torus
JULY 2002, Vol. 124 Õ 395
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stiffness with the increase in pressure. In an inflatable struct
the major source of the stiffness is its internal pressure. The ra
increase in the frequencies is not constant throughout the pres
range. First the natural frequencies increase rapidly, and there
they increase slowly or remain nearly constant. Figure 9 is a
of the natural frequencies vs. thickness~t! of the torus. Initially
the frequencies decrease quickly and later they decrease sl
with the wall thickness of the torus.

6 Rigid-Body Modes
Since the boundary conditions of the inflated torus

free, it shows six rigid-body modes corresponding to six z
natural frequencies. Of the six rigid body motions, three are tra
lations and the other three are the rotations about the three
pendicular axes. It is worth noting here that one of the main
vantages of using Sanders’ shell theory is that, unlike Love’s s
theory, strains do vanish for all six small rigid-body motions. T
following displacement functions give rise to the rigid bod
modes~Kordes@3#!:

~a! Displacement parallel to the axis of symmetry:

U~f,s!5A cos~f!, V~f,s!50, W~f,s!5A sin~f!
(44)

~b! Displacement perpendicular to the axis of symmetry:

U~f,s!5A sin~f!sin~s/R!, V~f,s!52A cos~s/R!,

W~f,s!52A cos~f!sin~s/R! (45)

U~f,s!5A sin~f!cos~s/R!, V~f,s!52A sin~s/R!,

W~f,s!52A cos~f!cos~s/R!, (46)
~c! Rotation about the axis of symmetry:

U~f,s!50, V~f,s!5A$R1r cos~f!%, W~f,s!50
(47)

~d! Rotation about axes perpendicular to the axis of symme

U~f,s!5A$r1Rcos~f!%sin~s/R!,

V~f,s!52Ar sin~f!cos~s/R!, W~f,s!5ARsin~f!sin~s/R!
(48)

U~f,s!5A$r1Rcos~f!%cos~s/R!,

V~f,s!52Ar sin~f!sin~s/R!,

W~f,s!52ARsin~f!cos~s/R!, (49)

Using the above rigid-body modes, the zero natural frequen
were verified.

7 Conclusions
The free vibration analysis of an inflated torus with free boun

ary conditions has been presented. The governing equations
formulated using Sanders’ shell theory including the effect
pressure. The displacement functions were assumed to cons
396 Õ Vol. 124, JULY 2002
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complete sine and cosine waves in the longitudinal direction. T
reduces the governing partial differential equations to a se
ordinary differential equations in the meridional coordinatef,
which was solved using Galerkin’s method to obtain the mo
shapes and the natural frequencies. The displacement functio
f were written in two groups, called the symmetric and antisy
metric modes, using Fourier series. First, we calculated the na
frequencies for a cylinder without pressure, which is a spe
case. The results were found to match the exact solution. Then
case of an inflated torus was considered and the results were a
compared with existing ones. The mode shapes and natural
quencies were presented. Finally, a parametric study was don
show the effects of the aspect ratio, pressure, and thickness o
natural frequencies corresponding to different mode shapes.
natural frequencies were found to be mostly decreasing with
increase in thickness and aspect ratio. However, with an incre
in pressure, the frequencies were found to be increasing. In
these cases, the change is high initially and then it becomes s
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