282 research outputs found
Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification
The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database
Semi-automatic identification of punching areas for tissue microarray building: the tubular breast cancer pilot study
Background: Tissue MicroArray technology aims to perform immunohistochemical staining on hundreds of different tissue samples simultaneously. It allows faster analysis, considerably reducing costs incurred in staining. A time consuming phase of the methodology is the selection of tissue areas within paraffin blocks: no utilities have been developed for the identification of areas to be punched from the donor block and assembled in the recipient block.Results: The presented work supports, in the specific case of a primary subtype of breast cancer (tubular breast cancer), the semi-automatic discrimination and localization between normal and pathological regions within the tissues. The diagnosis is performed by analysing specific morphological features of the sample such as the absence of a double layer of cells around the lumen and the decay of a regular glands-and-lobules structure. These features are analysed using an algorithm which performs the extraction of morphological parameters from images and compares them to experimentally validated threshold values. Results are satisfactory since in most of the cases the automatic diagnosis matches the response of the pathologists. In particular, on a total of 1296 sub-images showing normal and pathological areas of breast specimens, algorithm accuracy, sensitivity and specificity are respectively 89%, 84% and 94%.Conclusions: The proposed work is a first attempt to demonstrate that automation in the Tissue MicroArray field is feasible and it can represent an important tool for scientists to cope with this high-throughput technique
A Structure-Based Approach for Detection of Thiol Oxidoreductases and Their Catalytic Redox-Active Cysteine Residues
Cysteine (Cys) residues often play critical roles in proteins, for example, in
the formation of structural disulfide bonds, metal binding, targeting proteins
to the membranes, and various catalytic functions. However, the structural
determinants for various Cys functions are not clear. Thiol oxidoreductases,
which are enzymes containing catalytic redox-active Cys residues, have been
extensively studied, but even for these proteins there is little understanding
of what distinguishes their catalytic redox Cys from other Cys functions.
Herein, we characterized thiol oxidoreductases at a structural level and
developed an algorithm that can recognize these enzymes by (i) analyzing amino
acid and secondary structure composition of the active site and its similarity
to known active sites containing redox Cys and (ii) calculating accessibility,
active site location, and reactivity of Cys. For proteins with known or modeled
structures, this method can identify proteins with catalytic Cys residues and
distinguish thiol oxidoreductases from the enzymes containing other catalytic
Cys types. Furthermore, by applying this procedure to Saccharomyces
cerevisiae proteins containing conserved Cys, we could identify the
majority of known yeast thiol oxidoreductases. This study provides insights into
the structural properties of catalytic redox-active Cys and should further help
to recognize thiol oxidoreductases in protein sequence and structure
databases
Effectiveness of psychosocial interventions in eating disorders: an overview of Cochrane systematic reviews
ABSTRACT Eating disorders are psychiatric conditions originated from and perpetuated by individual, family and sociocultural factors. The psychosocial approach to treatment and prevention of relapse is crucial. To present an overview of the scientific evidence on effectiveness of psychosocial interventions in treatment of eating disorders. All systematic reviews published by the Cochrane Database of Systematic Reviews - Cochrane Library on the topic were included. Afterwards, as from the least recent date of these reviews (2001), an additional search was conducted at PubMed with sensitive search strategy and with the same keywords used. A total of 101 primary studies and 30 systematic reviews (5 Cochrane systematic reviews), meta-analysis, guidelines or narrative reviews of literature were included. The main outcomes were: symptomatic remission, body image, cognitive distortion, psychiatric comorbidity, psychosocial functioning and patient satisfaction. The cognitive behavioral approach was the most effective treatment, especially for bulimia nervosa, binge eating disorder and the night eating syndrome. For anorexia nervosa, the family approach showed greater effectiveness. Other effective approaches were interpersonal psychotherapy, dialectic behavioral therapy, support therapy and self-help manuals. Moreover, there was an increasing number of preventive and promotional approaches that addressed individual, family and social risk factors, being promising for the development of positive self-image and self-efficacy. Further studies are required to evaluate the impact of multidisciplinary approaches on all eating disorders, as well as the cost-effectiveness of some effective modalities, such as the cognitive behavioral therapy
Role of Ox-PAPCs in the Differentiation of Mesenchymal Stem Cells (MSCs) and Runx2 and PPARγ2 Expression in MSCs-Like of Osteoporotic Patients
BACKGROUND: Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and adipocytes and conditions causing bone loss may induce a switch from the osteoblast to adipocyte lineage. In addition, the expression of Runx2 and the PPARγ2 transcription factor genes is essential for cellular commitment to an osteogenic and adipogenic differentiation, respectively. Modified lipoproteins derived from the oxidation of arachidonate-containing phospholipids (ox-PAPCs: POVPC, PGPC and PEIPC) are considered important factors in atherogenesis. METHODOLOGY: We investigated the effect of ox-PAPCs on osteogenesis and adipogenesis in human mesenchymal stem cells (hMSCs). In particular, we analyzed the transcription factor Runx2 and the PPARγ2 gene expression during osteogenic and adipogenic differentiation in absence and in presence of ox-PAPCs. We also analyzed gene expression level in a panel of osteoblastic and adipogenic differentiation markers. In addition, as circulating blood cells can be used as a "sentinel" that responds to changes in the macro- or micro-environment, we analyzed the Runx2 and the PPARγ2 gene expression in MSCs-like and ox-PAPC levels in serum of osteoporotic patients (OPs). Finally, we examined the effects of sera obtained from OPs in hMSCs comparing the results with age-matched normal donors (NDs). PRINCIPAL FINDINGS: Quantitative RT-PCR demonstrated that ox-PAPCs enhanced PPARγ2 and adipogenic gene expression and reduced Runx2 and osteoblast differentiation marker gene expression in differentiating hMSCs. In OPs, ox-PAPC levels and PPARγ2 expression were higher than in NDs, whereas Runx2 was lower than in ND circulant MSCs-like. CONCLUSIONS: Ox-PAPCs affect the osteogenic differentiation by promoting adipogenic differentiation and this effect may appear involved in bone loss in OPs
Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics
4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Expression of Drosophila virilis Retroelements and Role of Small RNAs in Their Intrastrain Transposition
Transposition of two retroelements (Ulysses and Penelope) mobilized in the course of hybrid dysgenesis in Drosophila virilis has been investigated by in situ hybridization on polytene chromosomes in two D. virilis strains of different cytotypes routinely used to get dysgenic progeny. The analysis has been repeatedly performed over the last two decades, and has revealed transpositions of Penelope in one of the strains, while, in the other strain, the LTR-containing element Ulysses was found to be transpositionally active. The gypsy retroelement, which has been previously shown to be transpositionally inactive in D. virilis strains, was also included in the analysis. Whole mount is situ hybridization with the ovaries revealed different subcellular distribution of the transposable elements transcripts in the strains studied. Ulysses transpositions occur only in the strain where antisense piRNAs homologous to this TE are virtually absent and the ping-pong amplification loop apparently does not take place. On the other hand small RNAs homologous to Penelope found in the other strain, belong predominantly to the siRNA category (21nt), and consist of sense and antisense species observed in approximately equal proportion. The number of Penelope copies in the latter strain has significantly increased during the last decades, probably because Penelope-derived siRNAs are not maternally inherited, while the low level of Penelope-piRNAs, which are faithfully transmitted from mother to the embryo, is not sufficient to silence this element completely. Therefore, we speculate that intrastrain transposition of the three retroelements studied is controlled predominantly at the post-transcriptional level
Over-expression of lysophosphatidic acid receptor-2 in human invasive ductal carcinoma
INTRODUCTION: Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse effects on various cells. It interacts with at least three G-protein-coupled transmembrane receptors, namely LPA1, LPA2 and LPA3, whose expression in various tumours has not been fully characterized. In the present study we characterized the expression profile of LPA receptors in human breast cancer tissue and assessed the possible roles of each receptor. METHODS: The relative expression levels of each receptor's mRNA against β-actin mRNA was examined in surgically resected invasive ductal carcinomas and normal gland tissue using real-time RT-PCR. LPA2 expression was also examined immunohistochemically using a rat anti-LPA2 monoclonal antibody. RESULTS: In 25 cases normal and cancer tissue contained LPA1 mRNA at similar levels, whereas the expression level of LPA2 mRNA was significantly increased in cancer tissue as compared with its normal counterpart (3479.0 ± 426.6 versus 1287.3 ± 466.8; P < 0.05). LPA3 was weakly expressed in both cancer and normal gland tissue. In 48 (57%) out of 84 cases, enhanced expression of LPA2 protein was confirmed in carcinoma cells as compared with normal mammary epithelium by immunohistochemistry. Over-expression of LPA2 was detected in 17 (45%) out of 38 premenopausal women, as compared with 31 (67%) out of 46 postmenopausal women, and the difference was statistically significant (P < 0.05). CONCLUSION: These findings suggest that upregulation of LPA2 may play a role in carcinogenesis, particularly in postmenopausal breast cancer
- …