51 research outputs found

    Validation of techniques to mitigate copper surface contamination in CUORE

    Get PDF
    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.Comment: 10 pages, 6 figures, 6 table

    Search for 14.4 keV Solar Axions from M1 Transition of 57Fe with CUORE Crystals

    Get PDF
    We report the results of a search for axions from the 14.4 keV M1 transition from 57Fe in the core of the sun using the axio-electric effect in TeO2bolometers. The detectors are 5 × 5 × 5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg⋅d of data was made using a newly developed low energy trigger which was optimized to reduce the energy threshold of the detector. An upper limit of 0.58 c⋅kg−1⋅d−1 is established at 95% C.L., which translates into lower bounds fA ≥ 3.12 × 105 GeV 95% C.L. (DFSZ model) and fA ≥ 2.41 × 104 GeV 95% C.L. (KSVZ model) on the Peccei-Quinn symmetry-breaking scale, for a value of S = 0.5 of the flavor-singlet axial vector matrix element. These bounds can be expressed in terms of axion masses as mA ≤ 19.2 eV and mA ≤ 250 eV at 95% C.L. in the DFSZ and KSVZ models respectively. Bounds are given also for the interval 0.35 ≤ S ≤ 0.55

    Search for 14.4 keV Solar Axions from M1 Transition of 57Fe with CUORE Crystals

    Get PDF
    We report the results of a search for axions from the 14.4 keV M1 transition from 57Fe in the core of the sun using the axio-electric effect in TeO2bolometers. The detectors are 5 × 5 × 5 cm3 crystals operated at about 10 mK in a facility used to test bolometers for the CUORE experiment at the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg⋅d of data was made using a newly developed low energy trigger which was optimized to reduce the energy threshold of the detector. An upper limit of 0.58 c⋅kg−1⋅d−1 is established at 95% C.L., which translates into lower bounds fA ≥ 3.12 × 105 GeV 95% C.L. (DFSZ model) and fA ≥ 2.41 × 104 GeV 95% C.L. (KSVZ model) on the Peccei-Quinn symmetry-breaking scale, for a value of S = 0.5 of the flavor-singlet axial vector matrix element. These bounds can be expressed in terms of axion masses as mA ≤ 19.2 eV and mA ≤ 250 eV at 95% C.L. in the DFSZ and KSVZ models respectively. Bounds are given also for the interval 0.35 ≤ S ≤ 0.55

    Simulations of Events for the LUX-ZEPLIN (LZ) Dark Matter Experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1-2) ×\times 10−1210^{-12} pb at a WIMP mass of 40 GeV/c2c^2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    Projected sensitivities of the LUX-ZEPLIN experiment to new physics via low-energy electron recoils

    Get PDF
    LUX-ZEPLIN is a dark matter detector expected to obtain world-leading sensitivity to weakly-interacting massive particles interacting via nuclear recoils with a ∼ 7 -tonne xenon target mass. This paper presents sensitivity projections to several low-energy signals of the complementary electron recoil signal type: 1) an effective neutrino magnetic moment, and 2) an effective neutrino millicharge, both for p p -chain solar neutrinos, 3) an axion flux generated by the Sun, 4) axionlike particles forming the Galactic dark matter, 5) hidden photons, 6) mirror dark matter, and 7) leptophilic dark matter. World-leading sensitivities are expected in each case, a result of the large 5.6 t 1000 d exposure and low expected rate of electron-recoil backgrounds in the < 100     keV energy regime. A consistent signal generation, background model and profile-likelihood analysis framework is used throughout

    Projected sensitivity of the LUX-ZEPLIN experiment to the two-neutrino and neutrinoless double beta decays of Xe-134

    Get PDF

    The LUX-ZEPLIN (LZ) Experiment

    Get PDF
    We describe the design and assembly of the LUX-ZEPLIN experiment, a direct detection search for cosmic WIMP dark matter particles. The centerpiece of the experiment is a large liquid xenon time projection chamber sensitive to low energy nuclear recoils. Rejection of backgrounds is enhanced by a Xe skin veto detector and by a liquid scintillator Outer Detector loaded with gadolinium for efficient neutron capture and tagging. LZ is located in the Davis Cavern at the 4850' level of the Sanford Underground Research Facility in Lead, South Dakota, USA. We describe the major subsystems of the experiment and its key design features and requirements

    Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of 136Xe

    Get PDF
    The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to ^136Xe neutrinoless double beta decay, taking advantage of the significant (>600 kg) ^136Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of ^136Xe is projected to be 1.06×10^26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with ^136Xe at 1.06×10^27 years

    Projected sensitivity of the LUX-ZEPLIN experiment to the 0 ν β β decay of 136 Xe

    Get PDF
    The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to 136 Xe neutrinoless double β decay, taking advantage of the significant ( > 600 kg) 136 Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of 136 Xe is projected to be 1.06 × 10 26 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with 136 Xe at 1.06 × 10 27 years
    • …
    corecore