2,450 research outputs found

    Modeling the skin pattern of fishes

    Get PDF
    Complicated patterns showing various spatial scales have been obtained in the past by coupling Turing systems in such a way that the scales of the independent systems resonate. This produces superimposed patterns with different length scales. Here we propose a model consisting of two identical reaction-diffusion systems coupled together in such a way that one of them produces a simple Turing pattern of spots or stripes, and the other traveling wave fronts that eventually become stationary. The basic idea is to assume that one of the systems becomes fixed after some time and serves as a source of morphogens for the other system. This mechanism produces patterns very similar to the pigmentation patterns observed in different species of stingrays and other fishes. The biological mechanisms that support the realization of this model are discussed

    Exploring Counselor Educator Dispositions Related to Teaching

    Get PDF
    This study explores students’ preferences for counselor educator (CE) teaching dispositions. Forty-eight counselor education students completed a Q sort and answered post-sort qualitative questions. The study found four types of student preferences: a focus on experiential teaching, a focus on content and affect orientation, a focus on the educator-student relationship, and a focus on developing clinical skills. Also among the findings are a set of items that were unanimously unimportant to the participants: CE engagement in research and gatekeeping. These preferences are situated within the scholarship of teaching and learning and evidence-based practices in counselor education. Practical and research implications are shared

    Persistence of anticancer activity in berry extracts after simulated gastrointestinal digestion and colonic fermentation

    Get PDF
    Fruit and vegetable consumption is associated at the population level with a protective effect against colorectal cancer. Phenolic compounds, especially abundant in berries, are of interest due to their putative anticancer activity. After consumption, however, phenolic compounds are subject to digestive conditions within the gastrointestinal tract that alter their structures and potentially their function. However, the majority of phenolic compounds are not efficiently absorbed in the small intestine and a substantial portion pass into the colon. We characterized berry extracts (raspberries, strawberries, blackcurrants) produced by in vitro-simulated upper intestinal tract digestion and subsequent fecal fermentation. These extracts and selected individual colonic metabolites were then evaluated for their putative anticancer activities using in vitro models of colorectal cancer, representing the key stages of initiation, promotion and invasion. Over a physiologically-relevant dose range (0–50 µg/ml gallic acid equivalents), the digested and fermented extracts demonstrated significant anti-genotoxic, anti-mutagenic and anti-invasive activity on colonocytes. This work indicates that phenolic compounds from berries undergo considerable structural modifications during their passage through the gastrointestinal tract but their breakdown products and metabolites retain biological activity and can modulate cellular processes associated with colon cancer

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Aromatic polyamides and acrylic polymers as solid sensory materials and smart coated fibres for high acidity colorimetric sensing

    Get PDF
    We synthesized a solid sensory material for the extraction, detection and quantification of iron(III) in aqueous media. The material is a film-shaped colorless polymer membrane that exhibits gel behavior. The Fe(III) extraction and sensing characteristics are imparted by a new monomer derived from a natural product (i.e., Kojic acid), which exhibits chelating properties toward Fe(III). The sorption of Fe(III) on the membrane in water has been thoroughly characterized, including the sorption kinetics, sorption isotherms and profiles as a function of the pH. Fe(III) sorption followed pseudo first-order kinetics and required approximately 30 min to reach equilibrium. The maximum sorption capacity was approximately 0.04 mmol/g, and the sorption isotherms are well modeled by the Langmuir equation. The complexes that were found in the solid phase are in good agreement with those previously identified in the aqueous phase. Moreover, the sorption is highly specific (i.e., a recognition process) and results from the formation of a colored complex (iron(III)-Kojic acid derivative moieties). Therefore, the colorless sensory membrane turns red upon immersion in aqueous solutions containing Fe(III). The color output allows for both the qualitative visual determination of the Fe(III) concentration as well as also titration of Fe(III) using a) a UV/vis technique (limit of detection of 3.6 × 10−5 M; dynamic range of five decades, lower concentration = 1.65 × 10−6 M) and b) a computer vision-based analytical chemistry approach via color definition of the sensory membrane (RGB parameters) obtained from an image recorded with a handy device (e.g., a smartphone) (limit of detection of 2.0 × 10−5 M).Spanish Ministerio de Economía y Competitividad-Feder (MAT2011-22544 and MAT2014-54137-R) and by the Consejería de Educación – Junta de Castilla y León (BU232U13

    MicroRNA-Mediated Positive Feedback Loop and Optimized Bistable Switch in a Cancer Network Involving miR-17-92

    Get PDF
    MicroRNAs (miRNAs) are small, noncoding RNAs that play an important role in many key biological processes, including development, cell differentiation, the cell cycle and apoptosis, as central post-transcriptional regulators of gene expression. Recent studies have shown that miRNAs can act as oncogenes and tumor suppressors depending on the context. The present work focuses on the physiological significance of miRNAs and their role in regulating the switching behavior. We illustrate an abstract model of the Myc/E2F/miR-17-92 network presented by Aguda et al. (2008), which is composed of coupling between the E2F/Myc positive feedback loops and the E2F/Myc/miR-17-92 negative feedback loop. By systematically analyzing the network in close association with plausible experimental parameters, we show that, in the presence of miRNAs, the system bistability emerges from the system, with a bistable switch and a one-way switch presented by Aguda et al. instead of a single one-way switch. Moreover, the miRNAs can optimize the switching process. The model produces a diverse array of response-signal behaviors in response to various potential regulating scenarios. The model predicts that this transition exists, one from cell death or the cancerous phenotype directly to cell quiescence, due to the existence of miRNAs. It was also found that the network involving miR-17-92 exhibits high noise sensitivity due to a positive feedback loop and also maintains resistance to noise from a negative feedback loop

    High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo

    Get PDF
    High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process

    The IRYSS-COPD appropriateness study: objectives, methodology, and description of the prospective cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with chronic obstructive pulmonary disease (COPD) often experience exacerbations of the disease that require hospitalization. Current guidelines offer little guidance for identifying patients whose clinical situation is appropriate for admission to the hospital, and properly developed and validated severity scores for COPD exacerbations are lacking. To address these important gaps in clinical care, we created the IRYSS-COPD Appropriateness Study.</p> <p>Methods/Design</p> <p>The RAND/UCLA Appropriateness Methodology was used to identify appropriate and inappropriate scenarios for hospital admission for patients experiencing COPD exacerbations. These scenarios were then applied to a prospective cohort of patients attending the emergency departments (ED) of 16 participating hospitals. Information was recorded during the time the patient was evaluated in the ED, at the time a decision was made to admit the patient to the hospital or discharge home, and during follow-up after admission or discharge home. While complete data were generally available at the time of ED admission, data were often missing at the time of decision making. Predefined assumptions were used to impute much of the missing data.</p> <p>Discussion</p> <p>The IRYSS-COPD Appropriateness Study will validate the appropriateness criteria developed by the RAND/UCLA Appropriateness Methodology and thus better delineate the requirements for admission or discharge of patients experiencing exacerbations of COPD. The study will also provide a better understanding of the determinants of outcomes of COPD exacerbations, and evaluate the equity and variability in access and outcomes in these patients.</p

    Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    Get PDF
    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter
    • …
    corecore