93 research outputs found

    Contrasting responses of mean and extreme snowfall to climate change

    Get PDF
    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as −9 °C, compared to −14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain–snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.National Science Foundation (U.S.) (Grant AGS-1148594)United States. National Aeronautics and Space Administration (ROSES Grant 09-IDS09-0049

    Distinguishing Family from Friends

    Get PDF
    Kinship and friendship are key human relationships. Increasingly, data suggest that people are not less altruistic toward friends than close kin. Some accounts suggest that psychologically we do not distinguish between them; countering this is evidence that kinship provides a unique explanatory factor. Using the Implicit Association Test, we examined how people implicitly think about close friends versus close kin in three contexts. In Experiment 1, we examined generic attitudinal dispositions toward friends and family. In Experiment 2, attitude similarity as a marker of family and friends was examined, and in Experiments 3 and 4, strength of in-group membership for family and friends was examined. Findings show that differences exist in implicit cognitive associations toward family and friends. There is some evidence that people hold more positive general dispositions toward friends, associate attitude similarity more with friends, consider family as more representative of the in-group than friends, but see friends as more in-group than distant kin

    Increased costs reduce reciprocal helping behaviour of humans in a virtual evacuation experiment

    Get PDF
    Altruistic behaviour is widespread and highly developed in humans and can also be found in some animal species. It has been suggested that altruistic tendencies can depend on costs, benefits and context. Here, we investigate the changes in the occurrence of helping behaviour in a computer-based experiment that simulates an evacuation from a building exploring the effect of varying the cost to help. Our findings illuminate a number of key mechanistic aspects of human decision-making about whether to help or not. In a novel situation where it is difficult to assess the risks associated with higher costs, we reproduce the finding that increasing costs reduce helping and find that the reduction in the frequency of helping behaviour is gradual rather than a sudden transition for a threshold cost level. Interestingly, younger and male participants were more likely to help. We provide potential explanations for this result relating to the nature of our experiment. Finally, we find no evidence that participants in our experiment plan ahead over two consecutive, inter-dependent helping opportunities when conducting cost-benefit trade-offs in spontaneous decisions. We discuss potential applications of our findings to research into decision-making during evacuations

    Short interspersed nuclear element (SINE) sequences in the genome of the human pathogenic fungus Aspergillus fumigatus Af293.

    Get PDF
    Copyright: © 2016 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Kanhayuwa L, Coutts RHA (2016) Short Interspersed Nuclear Element (SINE) Sequences in the Genome of the Human Pathogenic Fungus Aspergillus fumigatus Af293. PLoS ONE 11(10): e0163215. https://doi.org/10.1371/journal.pone.0163215.Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4-14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140-493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3'-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50-65% and 60-75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259-343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.Peer reviewedFinal Published versio

    Predicting climate change using response theory: global averages and spatial patterns

    Get PDF
    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(105105) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO22 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Recombinase technology: applications and possibilities

    Get PDF
    The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087–2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
    corecore