94 research outputs found
World caf\ue9 method to engage smart energy-district project partners in assessing urban co-benefits
Urban energy-district projects introduce outstanding technological innovation in buildings and energy systems increasing sustainability in city neighborhoods. Such projects generate additional co-benefits for the city beyond changes in physical elements and development of social and institutional relationships (e.g. local employment, environmental quality, public health, property values, innovation attitude, etc.). Since exceeding main declared goals or not always clearly foreseen in the early project phase, these co-benefits are often not properly understood and considered. However, only their explicit recognition will make possible their inclusion in the assessment of the whole project\u2019s performance. From these considerations, this study faces the issue of engaging project partners in assessing co-benefits in order to consider a broad spectrum of relevant, positive effects in the evaluation process. Group knowledge and group thinking of this complex topic are investigated through the world caf\ue9 method, providing an atmosphere of trust and open discussions among participants. This empirical work lays the foundations to go beyond the mere economic measure as the sole criterion for assessing project effects, also including changes in end-user behavior and intangible asset
Career Success in Different Countries : Reflections on the 5C Project
fi=vertaisarvioitu|en=peerReviewed
Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter
We address the open question of performing an explicit stabilisation of all
closed string moduli (including dilaton, complex structure and Kaehler moduli)
in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric
geometry we construct Calabi-Yau manifolds with del Pezzo singularities.
D-branes located at such singularities can support the Standard Model gauge
group and matter content. In order to control complex structure moduli
stabilisation we consider Calabi-Yau manifolds which exhibit a discrete
symmetry that reduces the effective number of complex structure moduli. We
calculate the corresponding periods in the symplectic basis of invariant
three-cycles and find explicit flux vacua for concrete examples. We compute the
values of the flux superpotential and the string coupling at these vacua.
Starting from these explicit complex structure solutions, we obtain AdS and dS
minima where the Kaehler moduli are stabilised by a mixture of D-terms,
non-perturbative and perturbative alpha'-corrections as in the LARGE Volume
Scenario. In the considered example the visible sector lives at a dP_6
singularity which can be higgsed to the phenomenologically interesting class of
models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde
Rational F-Theory GUTs without exotics
We construct F-theory GUT models without exotic matter, leading to the MSSM
matter spectrum with potential singlet extensions. The interplay of engineering
explicit geometric setups, absence of four-dimensional anomalies, and realistic
phenomenology of the couplings places severe constraints on the allowed local
models in a given geometry. In constructions based on the spectral cover we
find no model satisfying all these requirements. We then provide a survey of
models with additional U(1) symmetries arising from rational sections of the
elliptic fibration in toric constructions and obtain phenomenologically
appealing models based on SU(5) tops. Furthermore we perform a bottom-up
exploration beyond the toric section constructions discussed in the literature
so far and identify benchmark models passing all our criteria, which can serve
as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur
On domain walls in a Ginzburg-Landau non-linear S^2-sigma model
The domain wall solutions of a Ginzburg-Landau non-linear -sigma hybrid
model are unveiled. There are three types of basic topological walls and two
types of degenerate families of composite - one topological, the other
non-topological- walls. The domain wall solutions are identified as the finite
action trajectories (in infinite time) of a related mechanical system that is
Hamilton-Jacobi separable in sphero-conical coordinates. The physical and
mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure
Yukawa hierarchies at the point of in F-theory
We analyse the structure of Yukawa couplings in local SU(5) F-theory models
with enhancement. In this setting the symmetry is broken down to
SU(5) by a 7-brane configuration described by T-branes, all the Yukawa
couplings are generated in the vicinity of a point and only one family of
quarks and leptons is massive at tree-level. The other two families obtain
their masses when non-perturbative effects are taken into account, being
hierarchically lighter than the third family. However, and contrary to previous
results, we find that this hierarchy of fermion masses is not always
appropriate to reproduce measured data. We find instead that different T-brane
configurations breaking to SU(5) give rise to distinct hierarchical
patterns for the holomorphic Yukawa couplings. Only some of these patterns
allow to fit the observed fermion masses with reasonable local model parameter
values, adding further constraints to the construction of F-theory GUTs. We
consider an model where such appropriate hierarchy is realised and
compute its physical Yukawas, showing that realistic charged fermions masses
can indeed be obtained in this case.Comment: 46 pages + appendices, 5 figures. v2, added references and typos
corrected, version accepted on JHEP. v3, typos correcte
D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation
In the framework of type IIB string compactifications on Calabi-Yau
orientifolds we describe how to construct consistent global embeddings of
models with fractional D3-branes and connected `flavour' D7-branes at del Pezzo
singularities with moduli stabilisation. Our results are applied to build an
explicit compact example with a left-right symmetric model at a dP_0
singularity which features three families of chiral matter and gauge coupling
unification at the intermediate scale. We show how to stabilise the moduli
obtaining a controlled de Sitter minimum and spontaneous supersymmetry
breaking. We find an interesting non-trivial dynamical relation between the
requirement of TeV-scale soft terms and the correct phenomenological values of
the unified gauge coupling and unification scale.Comment: 31 pages, 5 figures. v2: published version in JHEP, corrections in
section 2.2, Appendix A added for better illustration, typos correcte
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
The impact of the social environment on children's mental health in a prosperous city: an analysis with data from the city of Munich
BACKGROUND: Children with a low socioeconomic position are more affected by mental difficulties as compared to children with a higher socioeconomic position. This paper explores whether this socioeconomic pattern persists in the prosperous German city of Munich which features high quality of life and coverage of children mental health specialists that lies well above the national average and is among the highest in Europe. METHODS: 1,265 parents of preschool children participated in a cross-sectional health survey. They were given a self-administered questionnaire (including socioeconomic variables) and the 'Strengths and Difficulties Questionnaire (SDQ)', a well-established method to identify mental difficulties among children and adolescents. Prevalence estimates for the 'SDQ-Total Difficulties Score' were calculated, with a special focus on differences by parental (resp. household) socioeconomic position. The association between parental education, household income, single parenthood, nationality, and parental working status on one hand, and their children's mental health on the other, was explored using multivariable logistic regression models. The coverage of mental health specialists per 100,000 children aged 14 or younger in the city of Munich was also calculated. RESULTS: In Munich, the distribution of mental health difficulties among children follows the same socioeconomic pattern as described previously at the national level, but the overall prevalence is about 30% lower. Comparing different indicators of socioeconomic position, low parental education and household income are the strongest independent variables associated with mental difficulties among children (OR = 2.7; CI = 1.6 - 4.4 and OR = 2.8; CI = 1.4 - 5.6, respectively). CONCLUSIONS: Socioeconomic differences in the prevalence of childhood mental difficulties are very stable. Even in a city such as Munich, which is characterized by high quality of life, high availability of mental health specialists, and low overall prevalence of these mental difficulties, they are about as pronounced as in Germany as a whole. It can be concluded that the effect of several characteristics of socioeconomic position 'overrules' the effect of a health promoting regional environment
Biogenic Volatile Organic Compound and Respiratory CO2 Emissions after 13C-Labeling: Online Tracing of C Translocation Dynamics in Poplar Plants
Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission.In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%).We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux
- …