87 research outputs found
Monitoring and modelling landscape dynamics
International audienceChanges in land cover and land use are among the most pervasive and important sources of recent alterations of the Earth's land surface.This special issue also presents new directions in modelling landscape dynamics. Agent-based models have primarily been used to simulate local land use and land cover changes processes with a focus on decision making (Le 2008; Matthews et al. 2007; Parker et al. 2003; Bousquet and Le Page 2001)
Action Mechanism of Inhibin α-Subunit on the Development of Sertoli Cells and First Wave of Spermatogenesis in Mice
Inhibin is an important marker of Sertoli cell (SC) activity in animals with impaired spermatogenesis. However, the precise relationship between inhibin and SC activity is unknown. To investigate this relationship, we partially silenced both the transcription and translation of the gene for the α-subunit of inhibin, Inha, using recombinant pshRNA vectors developed with RNAi-Ready pSIREN-RetroQ-ZsGreen Vector (Clontech Laboratories, Mountain View, Calif). We found that Inha silencing suppresses the cell-cycle regulators Cyclin D1 and Cyclin E and up-regulates the cell-cycle inhibitor P21 (as detected by Western blot analysis), thereby increasing the number of SCs in the G1 phase of the cell cycle and decreasing the amount in the S-phase of the cell cycle (as detected by flow cytometry). Inha silencing also suppressed Pdgfa, Igf1, and Kitl mRNA levels and up-regulated Tgfbrs, Inhba, Inhbb, Cyp11a1, Dhh, and Tjp1 mRNA levels (as indicated by real-time polymerase chain reaction [PCR] analysis). These findings indicate that Inha has the potential to influence the availability of the ligand inhibin and its antagonist activin in the SC in an autocrine manner and inhibit the progression of SC from G1 to S. It may also participate in the development of the blood–testis barrier, Leydig cells, and spermatogenesis through its effect on Dhh, Tjp1, Kitl, and Pdgfa. Real-time PCR and Western blot analyses of Inha, Inhba, and Inhbb mRNA and Inha levels over time show that Inha plays an important role in the formation of round spermatid during the first wave of spermatogenesis in mice
BAMBI Regulates Angiogenesis and Endothelial Homeostasis through Modulation of Alternative TGFβ Signaling
BACKGROUND: BAMBI is a type I TGFβ receptor antagonist, whose in vivo function remains unclear, as BAMBI(-/-) mice lack an obvious phenotype. METHODOLOGY/PRINCIPAL FINDINGS: Identifying BAMBI's functions requires identification of cell-specific expression of BAMBI. By immunohistology we found BAMBI expression restricted to endothelial cells and by electron microscopy BAMBI(-/-) mice showed prominent and swollen endothelial cells in myocardial and glomerular capillaries. In endothelial cells over-expression of BAMBI reduced, whereas knock-down enhanced capillary growth and migration in response to TGFβ. In vivo angiogenesis was enhanced in matrigel implants and in glomerular hypertrophy after unilateral nephrectomy in BAMBI(-/-) compared to BAMBI(+/+) mice consistent with an endothelial phenotype for BAMBI(-/-) mice. BAMBI's mechanism of action in endothelial cells was examined by canonical and alternative TGFβ signaling in HUVEC with over-expression or knock-down of BAMBI. BAMBI knockdown enhanced basal and TGFβ stimulated SMAD1/5 and ERK1/2 phosphorylation, while over-expression prevented both. CONCLUSIONS/SIGNIFICANCE: Thus we provide a first description of a vascular phenotype for BAMBI(-/-) mice, and provide in vitro and in vivo evidence that BAMBI contributes to endothelial and vascular homeostasis. Further, we demonstrate that in endothelial cells BAMBI interferes with alternative TGFβ signaling, most likely through the ALK 1 receptor, which may explain the phenotype observed in BAMBI(-/-) mice. This newly described role for BAMBI in regulating endothelial function has potential implications for understanding and treating vascular disease and tumor neo-angiogenesis
Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.
We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development
Reticulate evolution is prevalent within recently duplicated human DNA
KIAA0187 is a gene of unknown function that maps to 10q11 and has been subject to recent duplication events. Here we analyze 18 human paralogs of this gene and show that paralogs of exons 14-23 were formed through satellite-associated pericentromeric-directed duplication, whereas paralogs of exons 1-9 were created via chromosome-specific satellite-independent duplications. In silico, Northern, and RT-PCR analyses indicate that nine paralogs are transcribed, including four in which KIAA0187 exons are spliced onto novel sequences. Despite this, no new genes appear to have been created by these events. The chromosome 10 paralogs map to 10q11, 10q22, 10q23.1, and 10q23.3, forming part of a complex family of chromosome-specific repeats that includes GLUD1, Cathepsin L, and KIAA1099 pseudogenes. Phylogenetic analyses and comparative FISH indicates that the 10q23.1 and 10q23.3 repeats were created in 10q11 and relocated by a paracentric inversion 13 to 27 Myr ago. Furthermore, the most recent duplications, involving the KIAA1099 pseudogenes, have largely been confined to 10q11. These results indicate a simple model for the evolution of this repeat family, involving multiple rounds of centromere-proximal duplication and dispersal through intrachromosomal rearrangement. However, more complex events must be invoked to account for high sequence identity between some paralogs
- …