1,312 research outputs found

    Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds

    Full text link
    We discuss the dimensional reduction of fermionic modes in a recently found class of consistent truncations of type IIB supergravity compactified on squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower dimensional equations of motion and effective action, and comment on the supersymmetry of the resulting theory, which is consistent with N=4 gauged supergravity in d=5d=5, coupled to two vector multiplets. We compute fermion masses by linearizing around two AdS5AdS_{5} vacua of the theory: one that breaks N=4 down to N=2 spontaneously, and a second one which preserves no supersymmetries. The truncations under consideration are noteworthy in that they retain massive modes which are charged under a U(1) subgroup of the RR-symmetry, a feature that makes them interesting for applications to condensed matter phenomena via gauge/gravity duality. In this light, as an application of our general results we exhibit the coupling of the fermions to the type IIB holographic superconductor, and find a consistent further truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected, minor change

    Rigidity of SU(2,2|2)-symmetric solutions in Type IIB

    Get PDF
    We investigate the existence of half-BPS solutions in Type IIB supergravity which are invariant under the superalgebra SU(2,2|2) realized on either AdS_5 x S^2 x S^1 or AdS_5 x S^3 warped over a Riemann surface \Sigma with boundary. We prove that, in both cases, the only solution is AdS_5 x S^5 itself. We argue that this result provides evidence for the non-existence of fully back-reacted intersecting D3/D7 branes with either AdS_5 x S^2 x S^1 x \Sigma or AdS_5 x S^3 x \Sigma near-horizon limits.Comment: 55 page

    N = 2 SCFTs: An M5-brane perspective

    Full text link
    Inspired by the recently discovered holographic duality between N=2 SCFTs and half-BPS M-theory backgrounds, we study probe M5-branes. Though our main focus is supersymmetric M5-branes whose worldvolume has an AdS_n factor, we also consider some other configurations. Of special mention is the identification of AdS_5 and AdS_3 probes preserving supersymmetry, with only the latter supporting a self-dual field strength.Comment: 27 page

    Towards Field Theory Amplitudes From the Cohomology of Pure Spinor Superspace

    Full text link
    A simple BRST-closed expression for the color-ordered super-Yang-Mills 5-point amplitude at tree-level is proposed in pure spinor superspace and shown to be BRST-equivalent to the field theory limit of the open superstring 5-pt amplitude. It is manifestly cyclic invariant and each one of its five terms can be associated to the five Feynman diagrams which use only cubic vertices. Its form also suggests an empirical method to find superspace expressions in the cohomology of the pure spinor BRST operator for higher-point amplitudes based on their kinematic pole structure. Using this method, Ansaetze for the 6- and 7-point 10D super-Yang-Mills amplitudes which map to their 14 and 42 color-ordered diagrams are conjectured and their 6- and 7-gluon expansions are explicitly computed.Comment: 14 pages, harvmac, v4: trivial edits in the text to comply with JHEP refere

    UBC-Nepal Expedition: Acute alterations in sympathetic nervous activity do not influence brachial artery endothelial function at sea-level and high-altitude.

    Get PDF
    Evidence indicates that increases in sympathetic nervous activity (SNA), and acclimatization to high-altitude (HA), may reduce endothelial function as assessed by brachial artery flow-mediated dilatation (FMD); however, it is unclear whether such changes in FMD are due to direct vascular constraint, or consequential altered hemodynamics (e.g. shear stress) associated with increased SNA as a consequence of exposure to HA. We hypothesized that: 1) at rest, SNA would be elevated and FMD would be reduced at HA compared to sea-level (SL); and 2) at SL and HA, FMD would be reduced when SNA was acutely increased, and elevated when SNA was acutely decreased. Using a novel, randomized experimental design, brachial artery FMD was assessed at SL (344m) and HA (5050m) in 14 participants during mild lower-body negative pressure (LBNP; -10 mmHg) and lower-body positive pressure (LBPP; +10 mmHg). Blood pressure (finger photoplethysmography), heart rate (electrodcardiogram), oxygen saturation (pulse oximetry), and brachial artery blood flow and shear rate (Duplex ultrasound) were recorded during LBNP, control, and LBPP trials. Muscle SNA was recorded (via microneurography) in a subset of participants (n=5). Our findings were: 1) at rest, SNA was elevated (P<0.01), and absolute FMD was reduced (P=0.024), but relative FMD remained unaltered (P=0.061), at HA compared to SL, and 2) despite significantly altering SNA with LBNP (+60.3±25.5%) and LBPP (-37.2±12.7%) (P<0.01), FMD was unaltered at SL (P=0.448), and HA (P=0.537). These data indicate that acute and mild changes in SNA do not directly influence brachial artery FMD at SL or HA

    N=8 Superspace Constraints for Three-dimensional Gauge Theories

    Get PDF
    We present a systematic analysis of the N=8 superspace constraints in three space-time dimensions. The general coupling between vector and scalar supermultiplets is encoded in an SO(8) tensor W_{AB} which is a function of the matter fields and subject to a set of algebraic and super-differential relations. We show how the conformal BLG model as well as three-dimensional super Yang-Mills theory provide solutions to these constraints and can both be formulated in this universal framework.Comment: 34 + 10 pages; added references, minor correction

    N=2 supergravity and supercurrents

    Full text link
    We address the problem of classifying all N=2 supercurrent multiplets in four space-time dimensions. For this purpose we consider the minimal formulation of N=2 Poincare supergravity with a tensor compensator, and derive its linearized action in terms of three N=2 off-shell multiplets: an unconstrained scalar superfield, a vector multiplet, and a tensor multiplet. Such an action was ruled out to exist in the past. Using the action constructed, one can derive other models for linearized N=2 supergravity by applying N=2 superfield duality transformations. The action depends parametrically on a constant non-vanishing real isotriplet g^{ij}=g^{ji} which originates as an expectation value of the tensor compensator. Upon reduction to N=1 superfields, we show that the model describes two dually equivalent formulations for the massless multiplet (1,3/2)+(3/2,2) depending on a choice of g^{ij}. In the case g^{11}=g^{22}=0, the action describes (i) new minimal N=1 supergravity; and (ii) the Fradkin-Vasiliev-de Wit-van Holten gravitino multiplet. In the case g^{12}=0, on the other hand, the action describes (i) old minimal N=1 supergravity; and (ii) the Ogievetsky-Sokatchev gravitino multiplet.Comment: 40 pages; v2: added references, some comments, new appendi

    More on the Nambu-Poisson M5-brane Theory: Scaling limit, background independence and an all order solution to the Seiberg-Witten map

    Full text link
    We continue our investigation on the Nambu-Poisson description of M5-brane in a large constant C-field background (NP M5-brane theory) constructed in Refs.[1, 2]. In this paper, the low energy limit where the NP M5-brane theory is applicable is clarified. The background independence of the NP M5-brane theory is made manifest using the variables in the BLG model of multiple M2-branes. An all order solution to the Seiberg-Witten map is also constructed.Comment: expanded explanations, minor corrections and typos correcte

    Selection at a single locus leads to widespread expansion of toxoplasma gondii lineages that are virulent in mice

    Get PDF
    The determinants of virulence are rarely defined for eukaryotic parasites such as T. gondii, a widespread parasite of mammals that also infects humans, sometimes with serious consequences. Recent laboratory studies have established that variation in a single secreted protein, a serine/threonine kinase known as ROPO18, controls whether or not mice survive infection. Here, we establish the extent and nature of variation in ROP18among a collection of parasite strains from geographically diverse regions. Compared to other genes, ROP18 showed extremely high levels of diversification and changes in expression level, which correlated with severity of infection in mice. Comparison with an out-group demonstrated that changes in the upstream region that regulates expression of ROP18 led to an historical increase in the expression and exposed the protein to diversifying selective pressure. Surprisingly, only three atypically distinct protein variants exist despite marked genetic divergence elsewhere in the genome. These three forms of ROP18 are likely adaptations for different niches in nature, and they confer markedly different virulence to mice. The widespread distribution of a single mouse-virulent allele among geographically and genetically disparate parasites may have consequences for transmission and disease in other hosts, including humans

    The Overall Coefficient of the Two-loop Superstring Amplitude Using Pure Spinors

    Get PDF
    Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulae force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out.Comment: 29 pages, harvmac TeX. v2: add reference
    corecore