62 research outputs found

    Assessing bird exclusion effects in a wetland crossed by a railway (Sado estuary, Portugal)

    Get PDF
    L. Borda-de-Água et al. (eds.), Railway Ecology, Chapter 11, p. 179-195Linear transportation infrastructures may displace wildlife from nearby areas that otherwise would provide adequate habitat conditions. This exclusion effect has been documented in roads, but much less is known about railways. Here we evaluated the potential exclusion effect on birds of a railway crossing a wetland of international importance (Sado Estuary, Portugal). We selected 22 sectors representative of locally available wetland habitats (salt pans, rice paddy fields, and intertidal mudflats); of each, half were located either close to (0–500 m) or far from (500–1500 m) the railway line. Water birds were counted in each sector between December 2012 and October 2015, during two months per season (spring, summer, winter, and autumn) and year, at both low and high tide. We recorded 46 species, of which the most abundant (>70% of individuals) were black-headed gull, greater flamingo, northern shoveler, black-tailed godwit, and lesser black-backed gull. Peak abundances were found in autumn and winter. There was no significant variation between sectors close to and far from the railway in species richness, total abundance, and abundance of the most common species. Some species tended to be most abundant either close to or far from the railway albeit not significantly so but this often varied across the tidal and annual cycles. Overall, our study did not find noticeable exclusion effects of this railway on wetland birds, with spatial variation in abundances probably reflecting habitat selection and daily movement patterns. Information is needed on other study systems to assess the generality of our findingsinfo:eu-repo/semantics/publishedVersio

    Albatrosses Following Fishing Vessels: How Badly Hooked Are They on an Easy Meal?

    Get PDF
    Fisheries have major impacts on seabirds, both by changing food availability and by causing direct mortality of birds during trawling and longline setting. However, little is known about the nature and the spatial-temporal extent of the interactions between individual birds and vessels. By studying a system in which we had fine-scale data on bird movements and activity, and near real-time information on vessel distribution, we provide new insights on the association of a threatened albatross with fisheries. During early chick-rearing, black-browed albatrosses Thalassarche melanophris from two different colonies (separated by only 75 km) showed significant differences in the degree of association with fisheries, despite being nearly equidistant to the Falklands fishing fleet. Most foraging trips from either colony did not bring tracked individuals close to vessels, and proportionally little time and foraging effort was spent near ships. Nevertheless, a few individuals repeatedly visited fishing vessels, which may indicate they specialise on fisheries-linked food sources and so are potentially more vulnerable to bycatch. The evidence suggests that this population has little reliance on fisheries discards at a critical stage of its nesting cycle, and hence measures to limit fisheries waste on the Patagonian shelf that also reduce vessel attractiveness and the risk of incidental mortality, would be of high overall conservation benefit

    Seasonal variations in the diet and foraging behaviour of dunlins Calidris alpina in a South European estuary: improved feeding conditions for northward migrants

    Get PDF
    During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway.This study was supported by Fundação para a CiĂȘncia e a Tecnologia (http://alfa.fct.mctes.pt/) through Project PTDC/MAR/119920/2010 and grants to RCM (SFRH/BD/44871/2008), TC (SFRH/BPD/46967/2008) and CDS (SFRH/BPD/64786/2009). JPG was under a research contract within project “Sustainable Use of Marine Resources - MARES” (CENTRO-07-ST24-FEDER-002033), co-financed by “Mais Centro” Regional Operational Programme (Centro Region) and European Regional Development Fund (ERDF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.publishe

    Are acoustical parameters of begging call elements of thin-billed prions related to chick condition?

    Get PDF
    Chicks of burrowing petrels use begging calls to advertise their hunger levels when parents arrived at the nest. In a previous study, adult thin-billed prions Pachyptila belcheri responded to higher begging call rates of their single chick by regurgitating larger meals. We tested whether acoustic parameters of begging call elements may also be involved in signalling. To describe variation in begging, we determined begging session parameters, namely the duration, number of calls and the mean and maximum rate of calling. We then digitised calls and carried out a semi-automatic extraction of six acoustic parameters of call elements, including mean and maximum acoustic frequency, the length of call elements and the location of the maximum frequency and amplitude within calls. Chicks showed strong individual differences in all parameters. While the session parameters were correlated with body condition and with the meal size the chick received, none of the acoustic parameters were related to body condition and provisioning. A cross-fostering experiment showed the same pattern, as only session parameters changed related to an experimentally altered body condition, while acoustical cues appear to play no role in signalling hunger levels. We suggest that this may be explained by the absence of sibling competition in these birds. As parents do not need to decide which chick to feed, immediate information on condition at the time of adult arrival may not be required

    Tracking reveals limited interactions between Campbell Albatross and fisheries during the breeding season

    Get PDF
    International audienceFisheries-related mortality has been influential in driving global declines in seabird populations. Understanding the overlap between seabird distribution and fisheries is one important element in assessing bycatch risk, and may be achieved by tracking the movements of individual birds and fishing vessels. Here, we assess the spatiotemporal overlap between the vulnerable Campbell Albatross Thalassarche impavida and large (>28 m) commercial fishing boats in New Zealand’s Exclusive Economic Zone (EEZ). We used a novel analytical approach, bivariate Gaussian bridge movement modelling, to compute spatiotemporal utilization distributions of bird-borne global positioning system (GPS) loggers and data from the Vessel Monitoring System. We tracked birds for 28,815 h during incubation and chick brooding, with half of this time spent within New Zealand’s EEZ, utilizing 6.7% of the available area. However, there was no evidence that albatrosses and fishing vessels were in the same location simultaneously. We accounted for the broader ecological footprint of fishing vessels by calculating the distance between GPS-fix locations for albatrosses and fishing vessels, revealing that albatrosses were within 30 km of fishing vessels in 8.4% of foraging trips. This highlights differences in estimated fine-scale spatiotemporal overlaps which may be due to the distance between albatrosses and vessels or the methods used. Overall, the low levels of spatial overlap could be a result of Campbell Albatross’ preference for foraging in areas without fishing activity or competitive exclusion by other species. Our results reinforce the importance of multi-scale, temporally explicit, and multi-national approaches to risk assessment, as Campbell Albatrosses spend approximately half of their time foraging outside New Zealand’s EEZ

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Benthic prey quantity and quality in the main mudflat feeding areas of the Tagus Estuary: Implications for bird and fish populations

    No full text
    Estuaries are among the most productive environments in the coastal zone that may act as sink of pollutants. In this study we evaluated how levels of heavy metal contamination can be reflected in the macroinvertebrate communities of six Tagus Estuary mudflats, inferring their consequences to upper trophic levels. We used Shannon-Wiener’s diversity, Pielou’s evenness and Simpson’s dominance indices, and macroinvertebrate densities to characterize benthic communities at the sites that presented different metal contamination loads. Those stations with high levels of contamination presented a lower diversity but also the highest prey density. This study indicated that unhealthy areas can still perform their ecosystem function with costs that remain to be evaluated. The biodiversity can be impoverished compared with other less contaminated sites, but with regard to their utilization as feeding areas by birds and fishes this is not a limiting factor. For this particular function of the mudflats, prey availability is the main characteristic determining the choice of one particular site as a bird and fish feeding area that may not be affected by heavy metal contamination.
    • 

    corecore