243 research outputs found
Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice.
BACKGROUND: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES: The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS: Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS: TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION: Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352
Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression
Pancreatic ductal adenocarcinoma (PDAC) is characterized by very early metastasis, suggesting the hypothesis that metastasis-associated changes may occur prior to actual tumor formation. In this study, we identified miR-192 as an epigenetically regulated suppressor gene with predictive value in this disease. miR-192 was downregulated by promoter methylation in both PDAC and chronic pancreatitis, the latter of which is a major risk factor for the development of PDAC. Functional studies in vitro and in vivo in mouse models of PDAC showed that overexpression of miR-192 was sufficient to reduce cell proliferation and invasion. Mechanistic analyses correlated changes in miR-192 promoter methylation and expression with epithelial–mesenchymal transition. Cell proliferation and invasion were linked to altered expression of the miR-192 target gene SERPINE1 that is encoding the protein plasminogen activator inhibitor-1 (PAI-1), an established regulator of these properties in PDAC cells. Notably, our data suggested that invasive capacity was altered even before neoplastic transformation occurred, as triggered by miR-192 downregulation. Overall, our results highlighted a role for miR-192 in explaining the early metastatic behavior of PDAC and suggested its relevance as a target to develop for early diagnostics and therapy. Cancer Res; 76(14); 4149–59. ©2016 AACR
Somatic mutations in exocrine pancreatic tumors: association with patient survival.
KRAS mutations are major factors involved in initiation and maintenance of pancreatic tumors. The impact of different mutations on patient survival has not been clearly defined. We screened tumors from 171 pancreatic cancer patients for mutations in KRAS and CDKN2A genes. Mutations in KRAS were detected in 134 tumors, with 131 in codon 12 and only 3 in codon 61. The GGT>GAT (G12D) was the most frequent mutation and was present in 60% (80/134). Deletions and mutations in CDKN2A were detected in 43 tumors. Analysis showed that KRAS mutations were associated with reduced patient survival in both malignant exocrine and ductal adenocarcinomas (PDAC). Patients with PDACs that had KRAS mutations showed a median survival of 17 months compared to 30 months for those without mutations (log-rank P = 0.07) with a multivariate hazard ratio (HR) of 2.19 (95%CI 1.09-4.42). The patients with G12D mutation showed a median survival of 16 months (log-rank-test P = 0.03) and an associated multivariate HR 2.42 (95%CI 1.14-2.67). Although, the association of survival in PDAC patients with CDKN2A aberrations in tumors was not statistically significant, the sub-group of patients with concomitant KRAS mutations and CDKN2A alterations in tumors were associated with a median survival of 13.5 months compared to 22 months without mutation (log-rank-test P = 0.02) and a corresponding HR of 3.07 (95%CI 1.33-7.10). Our results are indicative of an association between mutational status and survival in PDAC patients, which if confirmed in subsequent studies can have potential clinical application
Ex vivo chemosensitivity testing and gene expression profiling predict response towards adjuvant gemcitabine treatment in pancreatic cancer
Efficacy of chemotherapy for pancreatic cancer may be improved by tailoring it to individual chemosensitivity profiles. Identification of nonresponders before initiation of treatment may help to avoid side effects. In this study, primary pancreatic cancer cells were isolated from 18 patients undergoing pancreaticoduodenectomy for pancreatic cancer. Eight commonly used pancreatic cancer cell lines were used as controls. Ex vivo chemosensitivity for gemcitabine, 5-fluorouracil, mitomycin-C, cisplatinum, oxaliplatinum, paclitaxel and a combination of gemcitabine with oxaliplatinum or mitomycin-C was determined using a cellular ATP-based tumour chemosensitivity assay (ATP-TCA). Quantitative real-time–polymerase chain reaction was performed to determine RNA expression levels of genes implicated in chemoresistance. Chemosensitivity towards cytotoxic agents was highly variable in primary pancreatic cancer cells and pancreatic cancer cell lines. ATP-TCA results for gemcitabine correlated to the tissue expression of human equilibrative nucleoside transporter-1 (hENT1). Time to relapse in patients with gemcitabine-sensitive tumours was significantly higher than in patients with chemoresistant pancreatic cancers (P=0.01; 71 vs 269 days). Furthermore, time to relapse in gemcitabine-treated patients was related to hENT1 expression (P=0.0067). Thus, chemosensitivity testing using ATP-TCA in pancreatic cancer is feasible and correlated with time to relapse in gemcitabine-treated patients. This suggests that ATP-TCA testing could be used as a decision-making tool in the adjuvant treatment of pancreatic cancer
Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean
0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
False discovery rate estimation and heterobifunctional cross-linkers
<div><p>False discovery rate (FDR) estimation is a cornerstone of proteomics that has recently been adapted to cross-linking/mass spectrometry. Here we demonstrate that heterobifunctional cross-linkers, while theoretically different from homobifunctional cross-linkers, need not be considered separately in practice. We develop and then evaluate the impact of applying a correct FDR formula for use of heterobifunctional cross-linkers and conclude that there are minimal practical advantages. Hence a single formula can be applied to data generated from the many different non-cleavable cross-linkers.</p></div
Mononuclear cells modulate the activity of pancreatic stellate cells which in turn promote fibrosis and inflammation in chronic pancreatitis
Background: Interactions between mononuclear cells and activated pancreatic myofibroblasts (pancreatic stellate cells; PSC) may contribute to inflammation and fibrosis in chronic pancreatitis (CP). Methods: Markers of fibrosis and inflammation were concomitantly analysed by immunohistochemistry in chronic pancreatitis tissues. In vitro, PSC were stimulated with TNFalpha and LPS. Primary human blood mononuclear cells (PBMC) and PSC were cocultured, followed by analysis of cytokines and extracellular matrix (ECM) proteins. PBMC were derived from healthy donors and CP and septic shock patients. Results: In areas of mononuclear cell infiltration in chronic pancreatitis tissues, there was decreased immunoreactivity for collagen1 and fibronectin, in contrast to areas with sparse mononuclear cells, although PSC were detectable in both areas. LPS and TNFalpha induced collagen1 and fibronectin levels as well as the matrix degradation enzyme MMP-1. Coculture experiments with PSC and PBMC revealed increased fibronectin secretion induced by PBMC. In addition, donor and CP PBMC significantly induced an increase in IL-6, MCP-1 and TGFbeta levels under coculture conditions. Determination of the source of cytokines and ECM proteins by mRNA expression analysis confirmed PSC as major contributors of ECM production. The increase in cytokine expression was PBMC- and also PSC-derived. Conclusion: Mononuclear cells modulate the activity of pancreatic stellate cells, which may in turn promote fibrosis and inflammation
Seroprevalence of Toxoplasma gondii infection in arthritis patients in eastern China
Background: There is accumulating evidence for an increased susceptibility to infection in patients with arthritis. We sought to understand the epidemiology of Toxoplasma gondii infection in arthritis patients in eastern China, given the paucity of data on the magnitude of T. gondii infection in these patients.
Methods: Seroprevalence of T. gondii infection was assessed by enzyme-linked immunosorbent assay using a crude antigen of the parasite in 820 arthritic patients, and an equal number of healthy controls, from Qingdao and Weihai cities, eastern China. Sociodemographic, clinical and lifestyle information on the study participants were also obtained.
Results: The prevalence of anti-T. gondii IgG was significantly higher in arthritic patients (18.8%) compared with 12% in healthy controls (P < 0.001). Twelve patients with arthritis had anti-T. gondii IgM antibodies comparable with 10 control patients (1.5% vs 1.2%). Demographic factors did not significantly influence these seroprevalence frequencies. The highest T. gondii infection seropositivity rate was detected in patients with rheumatoid arthritis (24.8%), followed by reactive arthritis (23.8%), osteoarthritis (19%), infectious arthritis (18.4%) and gouty arthritis (14.8%). Seroprevalence rates of rheumatoid arthritis and reactive arthritis were significantly higher when compared with controls (P < 0.001 and P = 0.002, respectively). A significant association was detected between T. gondii infection and cats being present in the home in arthritic patients (odds ratio [OR], 1.68; 95% confidence interval [CI]: 1.24 – 2.28; P = 0.001).
Conclusions: These findings are consistent with and extend previous results, providing further evidence to support a link between contact with cats and an increased risk of T. gondii infection. Our study is also the first to confirm an association between T. gondii infection and arthritis patients in China. Implications for better prevention and control of T. gondii infection in arthritis patients are discussed.
Trial registration: This is an epidemiological survey, therefore trial registration was not required
Incomplete information about the partner affects the development of collaborative strategies in joint action.
Physical interaction with a partner plays an essential role in our life experience and is the basis of many daily activities. When two physically coupled humans have different and partly conflicting goals, they face the challenge of negotiating some type of collaboration. This requires that both participants understand their partner's state and current actions. But, how would the collaboration be affected if information about their partner were unreliable or incomplete? We designed an experiment in which two players (a dyad) are mechanically connected through a virtual spring, but cannot see each other. They were instructed to perform reaching movements with the same start and end position, but through different via-points. In different groups of dyads we varied the amount of information provided to each player about his/her partner: haptic only (the interaction force perceived through the virtual spring), visuo-haptic (the interaction force is also displayed on the screen), and partner visible (in addition to interaction force, partner position is continuously displayed on the screen). We found that incomplete information about the partner affects not only the speed at which collaboration is achieved (less information, slower learning), but also the actual collaboration strategy. In particular, incomplete or unreliable information leads to an interaction strategy characterized by alternating leader-follower roles. Conversely, more reliable information leads to more synchronous behaviors, in which no specific roles can be identified. Simulations based on a combination of game theory and Bayesian estimation suggested that synchronous behaviors correspond to optimal interaction (Nash equilibrium). Roles emerge as sub-optimal forms of interaction, which minimize the need to account for the partner. These findings suggest that collaborative strategies in joint action are shaped by the trade-off between the task requirements and the uncertainty of the information available about the partner
Charge Transport in DNA-Based Devices
Charge migration along DNA molecules has attracted scientific interest for
over half a century. Reports on possible high rates of charge transfer between
donor and acceptor through the DNA, obtained in the last decade from solution
chemistry experiments on large numbers of molecules, triggered a series of
direct electrical transport measurements through DNA single molecules, bundles
and networks. These measurements are reviewed and presented here. From these
experiments we conclude that electrical transport is feasible in short DNA
molecules, in bundles and networks, but blocked in long single molecules that
are attached to surfaces. The experimental background is complemented by an
account of the theoretical/computational schemes that are applied to study the
electronic and transport properties of DNA-based nanowires. Examples of
selected applications are given, to show the capabilities and limits of current
theoretical approaches to accurately describe the wires, interpret the
transport measurements, and predict suitable strategies to enhance the
conductivity of DNA nanostructures.Comment: A single pdf file of 52 pages, containing the text and 23 figures.
Review about direct measurements of DNA conductivity and related theoretical
studies. For higher-resolution figures contact the authors or retrieve the
original publications cited in the caption
- …