426 research outputs found

    Polistes olivaceous decreases biotic surface colonization

    Get PDF
    The objective of this investigation was to evaluate the anti-bacterial efficacy of the honeycomb of Polistes olivaceous on oral biotic surface (biofilm) model by means of pH response, population of oral bacteria and enamel mineralization. Three copies of a three-organism-bacterial consortium was grown on hydroxyapatite (HA) surfaces in a continuous culture system and exposed to repeated solution pulses of sucrose solution every 12 h to construct a cariogenic biofilm on the HA discs in the flow cells. One flow cell was only pulsed with 500 μmol/ml of sucrose (S group). The second flow cell was pulsed with 500 μmol/ml sucrose and 2.5 mg/ml P. olivaceous extract (P group). The third flow cell was pulsed with 500 μmol/ml sucrose, 230 mg/L sodium fluoride and 0.2% chlorohexidine digluconate (C group). During the course of carbohydrate supplement, the pH of the S group dropped sharply compared with the others. The P group demonstrated pH recovery to baseline more easily than the S group (p < 0.05). The C group demonstrated very little pH drop. The P group displayed a lower level of colonization than the S group, which was reflected by a lower cariogenic bacterial count and a less compact biofilm especially after the third pulse. P. olivaceous suppresses bacteria growth and accelerates pH recovery. P. olivaceous may have stabilizing effect against cariogenic shift on the oral biofilm, preventing tooth decay. © 2009 Academic Journals.published_or_final_versio

    Polistes olivaceous decreases biotic surface colonization

    Get PDF
    The objective of this investigation was to evaluate the anti-bacterial efficacy of the honeycomb of Polistes olivaceous on oral biotic surface (biofilm) model by means of pH response, population of oralbacteria and enamel mineralization. Three copies of a three-organism-bacterial consortium was grown on hydroxyapatite (HA) surfaces in a continuous culture system and exposed to repeated solution pulses of sucrose solution every 12 h to construct a cariogenic biofilm on the HA discs in the flow cells. One flow cell was only pulsed with 500 mol/ml of sucrose (S group). The second flow cell was pulsed with 500 mol/ml sucrose and 2.5 mg/ml P. olivaceous extract (P group). The third flow cell was pulsed with 500 mol/ml sucrose, 230 mg/L sodium fluoride and 0.2% chlorohexidine digluconate (C group). During the course of carbohydrate supplement, the pH of the S group dropped sharply compared with the others. The P group demonstrated pH recovery to baseline more easily than the S group (p < 0.05). The C group demonstrated very little pH drop. The P group displayed a lower level of colonization than the S group, which was reflected by a lower cariogenic bacterial count and a less compact biofilm especially after the third pulse. P. olivaceous suppresses bacteria growth and accelerates pH recovery.P. olivaceous may have stabilizing effect against cariogenic shift on the oral biofilm, preventing tooth decay

    Fine Mapping of Posttranslational Modifications of the Linker Histone H1 from Drosophila melanogaster

    Get PDF
    The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs), including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous

    Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters

    Get PDF
    A metal-organic hybrid perovskite (CH3NH3PbI3) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal–organic hybrid materials, a highly orientated film of (CH3NH3)3Bi2I9 with nanometre-sized core clusters of Bi2I93− surrounded by insulating CH3NH3+ was prepared via solution processing. The (CH3NH3)3Bi2I9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Publisher PDFPeer reviewe

    Inflammasome sensor NLRP1 controls rat macrophage susceptibility to Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an intracellular parasite that infects a wide range of warm-blooded species. Rats vary in their susceptibility to this parasite. The Toxo1 locus conferring Toxoplasma resistance in rats was previously mapped to a region of chromosome 10 containing Nlrp1. This gene encodes an inflammasome sensor controlling macrophage sensitivity to anthrax lethal toxin (LT) induced rapid cell death (pyroptosis). We show here that rat strain differences in Toxoplasma infected macrophage sensitivity to pyroptosis, IL-1β/IL-18 processing, and inhibition of parasite proliferation are perfectly correlated with NLRP1 sequence, while inversely correlated with sensitivity to anthrax LT-induced cell death. Using recombinant inbred rats, SNP analyses and whole transcriptome gene expression studies, we narrowed the candidate genes for control of Toxoplasma-mediated rat macrophage pyroptosis to four genes, one of which was Nlrp1. Knockdown of Nlrp1 in pyroptosis-sensitive macrophages resulted in higher parasite replication and protection from cell death. Reciprocally, overexpression of the NLRP1 variant from Toxoplasma-sensitive macrophages in pyroptosis-resistant cells led to sensitization of these resistant macrophages. Our findings reveal Toxoplasma as a novel activator of the NLRP1 inflammasome in rat macrophages

    Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteasome inhibitors and apoptosis inducers in human breast cancer cells

    Get PDF
    INTRODUCTION: A physiological feature of many tumor tissues and cells is the tendency to accumulate high concentrations of copper. While the precise role of copper in tumors is cryptic, copper, but not other trace metals, is required for angiogenesis. We have recently reported that organic copper-containing compounds, including 8-hydroxyquinoline-copper(II) and 5,7-dichloro-8-hydroxyquinoline-copper(II), comprise a novel class of proteasome inhibitors and tumor cell apoptosis inducers. In the current study, we investigate whether clioquinol (CQ), an analog of 8-hydroxyquinoline and an Alzheimer's disease drug, and pyrrolidine dithiocarbamate (PDTC), a known copper-binding compound and antioxidant, can interact with copper to form cancer-specific proteasome inhibitors and apoptosis inducers in human breast cancer cells. Tetrathiomolybdate (TM), a strong copper chelator currently being tested in clinical trials, is used as a comparison. METHODS: Breast cell lines, normal, immortalized MCF-10A, premalignant MCF10AT1K.cl2, and malignant MCF10DCIS.com and MDA-MB-231, were treated with CQ or PDTC with or without prior interaction with copper, followed by measurement of proteasome inhibition and cell death. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity and ubiquitinated proteins in protein extracts of the treated cells. Apoptotic cell death was measured by morphological changes, Hoechst staining, and poly(ADP-ribose) polymerase cleavage. RESULTS: When in complex with copper, both CQ and PDTC, but not TM, can inhibit the proteasome chymotrypsin-like activity, block proliferation, and induce apoptotic cell death preferentially in breast cancer cells, less in premalignant breast cells, but are non-toxic to normal/non-transformed breast cells at the concentrations tested. In contrast, CQ, PDTC, TM or copper alone had no effects on any of the cells. Breast premalignant or cancer cells that contain copper at concentrations similar to those found in patients, when treated with just CQ or PDTC alone, but not TM, undergo proteasome inhibition and apoptosis. CONCLUSION: The feature of breast cancer cells and tissues to accumulate copper can be used as a targeting method for anticancer therapy through treatment with novel compounds such as CQ and PDTC that become active proteasome inhibitors and breast cancer cell killers in the presence of copper

    An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome

    Get PDF
    Background: Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling - quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. Results: The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. Conclusions: The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration

    Tracking the Evolution of HIV/AIDS in China from 1989–2009 to Inform Future Prevention and Control Efforts

    Get PDF
    BACKGROUND: To determine policy implications, this analysis tracks the evolution of HIV/AIDS infection across China to understand current trends and potential risk factors. METHODS AND PRINCIPAL FINDINGS: A retrospective study with spatial analytical model and multilevel spatial models was conducted among 326,157 HIV/AIDS cases reported from 1989-2009. The results indicate that the distribution of HIV/AIDS was clustered at the county level with different directional distributions across China from 2003 to 2009. Compared to 2003, by 2009 there was a 122% increase in HIV cases among rural residents, 294% increase among urban residents, 211% increase among migrants, and 237% increase among permanent residents. The overall proportion of HIV by different routes of transmission showed dramatic changes with a 504% increase in sexual transmission of HIV, 90% decrease in blood/plasma transmission, and 35% decrease in injecting drug user transmission. Sexual transmission was the major transmission route among women (44%) and the elderly (59% in men, 44% in women) as well as among permanent (36%) and urban residents (33%). Among those <65 years old, women increased more than men, but among those ≥ 65 years, men increased more than women. Migrants contributed to the variance of HIV infection between counties but not within counties. The length of highway and urbanization combined with illiteracy were risk factors for HIV/AIDS. CONCLUSIONS/SIGNIFICANCE: Rates of HIV/AIDS among permanent urban residents, particularly women and elderly men, have increased significantly in recent years. To prevent HIV from spreading further among the general population, additional attention should be paid to these populations as well as to migrants

    What is new in uremic toxicity?

    Get PDF
    Uremic syndrome results from a malfunctioning of various organ systems due to the retention of compounds which, under normal conditions, would be excreted into the urine and/or metabolized by the kidneys. If these compounds are biologically active, they are called uremic toxins. One of the more important toxic effects of such compounds is cardio-vascular damage. A convenient classification based on the physico-chemical characteristics affecting the removal of such compounds by dialysis is: (1) small water-soluble compounds; (2) protein-bound compounds; (3) the larger “middle molecules”. Recent developments include the identification of several newly detected compounds linked to toxicity or the identification of as yet unidentified toxic effects of known compounds: the dinucleotide polyphosphates, structural variants of angiotensin II, interleukin-18, p-cresylsulfate and the guanidines. Toxic effects seem to be typically exerted by molecules which are “difficult to remove by dialysis”. Therefore, dialysis strategies have been adapted by applying membranes with larger pore size (high-flux membranes) and/or convection (on-line hemodiafiltration). The results of recent studies suggest that these strategies have better outcomes, thereby clinically corroborating the importance attributed in bench studies to these “difficult to remove” molecules

    Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Get PDF
    A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures
    corecore