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An investigation of causes of false positive
single nucleotide polymorphisms using
simulated reads from a small eukaryote
genome
Antonio Ribeiro1,4*, Agnieszka Golicz2,3, Christine Anne Hackett5, Iain Milne1, Gordon Stephen1,
David Marshall1, Andrew J. Flavell4 and Micha Bayer1

Abstract

Background: Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has
increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of
large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the
generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in
mapping-based variant calling— quality of the reference sequence, read length, choice of mapper and variant caller,
mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor
level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false
positive.

Results: The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs
(Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs
generated and there was a considerable amount of interaction between the different factors. Using a fragmented
reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and
a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the
outcome. The effect of read length was more complex and suggests a possible interaction between mapping
specificity and the potential for contributing more false positives as read length increases.

Conclusions: The choice of tools and parameters involved in variant calling can have a dramatic effect on the
number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding
tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP
discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also
a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read
mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model
organism in its early stages of genomic exploration.
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Background
Single-nucleotide polymorphisms are used as molecular
markers in diverse applications, such as human disease
genetics, plant and animal breeding, population genetics
and forensics [1–3]. The emergence of NGS technologies
has yielded dramatic improvements in costs and through-
put [3, 4]. However, SNP discovery in NGS data can result
in significant numbers of false positives [5, 6]. In addi-
tion to sequencing errors, which vary in pattern and rate
depending on the sequencing platform [7], the short read
lengths that prevail in NGS, together with the repeti-
tious nature of the genomes of many organisms, can lead
to errors in the genome assembly and/or read mapping
stages.
The traditional approach to SNP discovery is based on

mapping reads to a reference sequence, but several new
approaches have been suggested which are mapping-free
(e.g. [8]). Their uptake appears to have been slow, how-
ever, and the majority of projects currently still employ a
mapping-based approach for SNP discovery.
Kumar et al. (2012) have argued that SNP discovery

improves with better quality reference genomes. Misas-
sembly of the reference sequence creates the conditions
required for reads to be mismapped in the first place, as
the origin of a read may not be available in an imperfect
assembly. This is of particular relevance for SNP discov-
ery projects where a well assembled and well curated
reference sequence is not yet available. The reference
sequences of most sequenced organisms are classified as a
“permanent draft” (https://gold.jgi-psf.org/statistics), and
have undergone little or no manual curation following the
primary assembly stage. Typically, the resulting genome
sequences are fragmented and incomplete with substan-
tial numbers of misassemblies. All of these imperfections
may subsequently cause read mismapping, and our study
specifically addresses the issues associated with this.
In the present work, we have investigated the effects of

a number of factors on the generation of false positive
SNPs (loci incorrectly identified as polymorphic) using
the ∼125 Mbp genome of the flowering plant Arabidopsis
thaliana. Simulated NGS read datasets varying in length
from 50 to 1000 base pairs (bp) were used to generate
both new genome assemblies and mappings to test the
effects of NGS read length, different software for genome
assembly, read mapping and SNP calling (including vari-
able parameter settings), as well as SNP filtering, on FP
SNP generation.

Methods
Read datasets preparation
The five chromosome sequences of Arabidopsis thaliana,
available at ftp://ftp.arabidopsis.org/home/tair/Sequences/
whole_chromosomes, served as the template for the gen-
eration of the simulated reads for our study. The SimSeq

read simulator (last update 4.12.2011; https://github.com/
jstjohn/SimSeq) was used to generate haploid, error-
free paired-end and mate-pair reads (the latter created
specifically for the assembly stage) from each of the chro-
mosome sequences (see Additional file 1: Supplementary
data section SD.1). This sampling mode allowed us to
assume that every SNP encountered in the mappings
must be an FP SNP which is due to read mismapping as
there were no other sources of variant alleles. Paired-end
reads were produced with 100-fold coverage depth and
at lengths of 50, 100, 150, 300, 500, and 1000 bp (Fig. 1).
Fragment sizes for these were 90, 180, 270, 540, 900 and
1800 bp respectively. Mate-pair reads were produced
with 50-fold coverage depth at a length of 150 bp, with a
fragment size of 3000 bp. Full details of the fragment sizes
are provided in Additional file 1: Supplementary data
(section SD.1.1, Table S4).

Reference genome assembly
In order to provide the conditions typical of a non-model
organism use case, two reference sequences for the read
mapping were de novo assembled from the 150 bp read
datasets, one using the Velvet assembler version 1.2.10 [9]
and the other using the Allpaths-LG assembler version
r51511 [10, 11].
To keep the design of the experiment simple, we used

only the 150 bp read datasets for assembly. The depth
of coverage for the assemblies was 150x, where 100x
was contributed by the 150 bp paired-end reads dataset,
while 50x was contributed by the mate-pair reads. Each
assembler was run twice, using separately simulated read
datasets. Additional information about the assembly pro-
cess can be found in the Additional file 1: Supplementary
data (section SD.2).
To assess the degree of difference between the de

novo assembled reference sequence and the A. thaliana
genome sequence (the control for the read mapping), we
analysed each replicate assembly with QUAST [12], using
the A. thaliana genome sequence and the gene models as
the benchmark dataset. The results from this are shown
in the Additional file 1: Supplementary data (section SD.2;
Table S5). Definitions of the metrics employed by QUAST
are available in the online manual for this software
(http://quast.bioinf.spbau.ru/manual.html#sec3.1.1).

Readmapping
Each of the six read datasets (50–1000 bp) was mapped
to the de novo assemblies and the A. thaliana control (see
below) with Bowtie2 version 2.2.1 [13] and BWA-SW ver-
sion 0.7.10-r789 [14], both widely used alignment tools [5]
capable of dealing with the range of read lengths explored
in the study. In order to keep coverage comparable among
all mappings, we used the same mismatch rate across all
read lengths, rather than a fixed number of mismatches.

https://gold.jgi-psf.org/statistics
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes
ftp://ftp.arabidopsis.org/home/tair/Sequences/whole_chromosomes
https://github.com/jstjohn/SimSeq
https://github.com/jstjohn/SimSeq
http://quast.bioinf.spbau.ru/manual.html#sec3.1.1
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a

b

c

Fig. 1 Experimental design. a The A. thaliana genome was used to generate simulated reads of different lengths. De novo assemblies were computed
from the 150 bp read datasets using different assemblers. bWith the assemblies as references, separate read mappings were carried out for each of
the different read length datasets and with different combination of factor levels, using the original genome as a control. c SNP detection was
carried out with different variant callers and the results were analysed to detect whether the mismatched reads causing the SNPs were due to
mismapping. SNP annotation was performed to detect enrichment for particular genomic features at SNP positions

To enable any SNPs to be called, at least one mismatch per
read must be allowed. With a minimum read length of 50
bp this equates to a mismatch rate of 1 mismatch in 50 bp,
or 2 %. We aimed to compare strict and relaxed mismatch
stringencies, and thus we chose the default of the latest
BWA algorithm as the relaxed setting. This was calculated
as being equivalent to 14 % mismatches per read. We then
applied both mismatch rates (2 % and 14 %) to each of the
mappers. Additional file 1: Supplementary data section
SD.3 describes how the parameter settings were calculated
for each mapper.

SNP calling
The FreeBayes variant caller (version v0.9.18-3-gb72a21b,
https://github.com/ekg/freebayes, [15]) and the Genome
Analysis Toolkit (GATK, version 3.3-0, https://www.
broadinstitute.org/gatk/, [16, 17]) were run over each of
the mappings separately. Both tools were chosen for SNP
discovery as they are widely used [18] and provide sub-
stantial configurability.
To speed up the SNP calling in FreeBayes, we produced

a Java SE 7/SAMtools 0.1.18 [19] wrapper around it that

splits and parallelises the job across multiple nodes and
processors of a compute cluster. This allowed the jobs to
run in a fraction of the time that would otherwise have
been required. This is achieved by querying the list of con-
tigs, discarding those that have no reads mapped to them,
splitting the remainder into discrete regions that can be
processed independently by FreeBayes, before finally con-
catenating the results back together into a single VCF
(Variant Call Format) file.
For GATK, we designed a pipeline script to perform

duplicate markup with Picard Tools (version 1.119 (http://
broadinstitute.github.io/picard)), and local realignment
around indels and variant calling with GATK. The base
quality recalibration step was left out as we did not have
known variants as part of our study design. To evalu-
ate the effect of the mapping quality, both variant callers
were configured to run with (MAPQ = 20) and with-
out (MAPQ = 0) mapping quality filtering. The detailed
parameters used in FreeBayes and GATK are available in
the Additional file 1: Supplementary data section SD.4.
We also included filtering of SNPs by read depth as

an additional experimental factor (maximum read depth

https://github.com/ekg/freebayes
https://www.broadinstitute.org/gatk/
https://www.broadinstitute.org/gatk/
http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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150 versus no filtering). Depth filtering can be applied to
remove SNPs located in large accumulations of reads in
regions that e.g. represent collapsed repeats in the refer-
ence sequence and consequently attract large numbers of
reads.
In order to provide more realistic final SNP numbers,

we also removed multiallelic SNPs from all resulting VCF
files, as well as SNPs with SNP quality scores of less than
20.

Control dataset
The five chromosome sequences of A. thaliana (see
section “Read datasets preparation”) were combined to be
used as a control reference sequence for the study. The
read mapping and SNP calling stages were also applied to
this original genome sequence. Using the original refer-
ence should theoretically yield no or at least fewer SNPs
as the additional complication of the de novo assembly
is removed here, and can therefore be used as a control
for the de novo assembled reference sequences. Figure 2
illustrates the concept of the control.

Readmismapping quantification stage
A custom pipeline consisting of our own Java code,
and other resources including the Picard API (http://
sourceforge.net/projects/picard/), SAMtools version 0.1.
18 [19], and BLASTN [20], was used to quantify instances
where mismapped reads caused SNPs, taking advantage
of the read origin information generated by the read
simulator (Additional file 1: Supplementary data section
SD.5; for source code availability see SD.13). For each
SNP, the code quantified the percentage of unique over-
lapping (covering) reads which contained the alternate
allele and originally belonged to a different chromosome
or different region in the same chromosome, indicating
mismapping of reads. To avoid redundancy, only those
SNPs were considered that had not been filtered out by
the depth filter. The Additional file 1: Supplementary
data section SD.6 shows the code workflow in
detail.

SNP annotation
We tested whether the regions containing SNPs were
enriched for a given type of genomic feature, such as
intergenic regions, gene families, pseudogenes, repeats,
transposons, etc. We also compared the proportions of
features observed in the FP SNPs with those for the entire
genome. SNP manifests (SNP site plus approximately 120
bp flanking region either side) were extracted from the de
novo assembly sequence and BLASTed against a database
composed of coding sequences (CDS) and intergenic
regions (ftp://ftp.arabidopsis.org/home/tair/Sequences/
blast_datasets/TAIR10_blastsets/) retrieved from the A.
thaliana annotation. The same procedure was performed
on the control mapping. The steps required to build the
BLAST database are detailed in the Additional file 1:
Supplementary data section SD.7.

Replicate workflow runs
To ensure reproducibility and consistency, the experiment
was carried out in duplicate. For each read length, two
independent, randomly sampled read sets were created,
and a new assembly was made from the 150 bp read
datasets using both Velvet and Allpaths-LG. The mapping
of all read datasets, SNP calling, and the SNP annotation
were performed with both the de novo assemblies and the
whole genome control as reference sequences for each fac-
tor combination. Additional information about the repli-
cate assemblies is also available in the Additional file 1:
Supplementary data (section SD.2; Table S5). Figures 1, 2
and 3 summarise the study’s experimental design and the
application of tools and variables.

Statistical analysis
Analysis of variance (ANOVA) was used to test for sig-
nificant effects of the seven factors and all possible
interactions on the number of false positives detected.
The replicate effect was fitted as a random effect, while
all other effects and interactions were fitted as fixed
effects. The untransformed number of false positives did
not satisfy the usual ANOVA assumptions of normally

Original genome for  
read generation

Assembly
Mapped reads  

Mapping to 
assembly

Mapping to 
genome 
(control)

Original genome
Mapped reads  

Fig. 2 Control conceptualized. The reads indicated by arrows cannot be mapped to their original positions in the de novo reference genome
assembly (Section “Reference genome assembly”), due to gaps or misassembly and reads may therefore map to the wrong location, which
potentially results in FP SNPs. In the control mapping to the complete genome, the same reads can map back correctly to their original positions

http://sourceforge.net/projects/picard/
http://sourceforge.net/projects/picard/
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/
ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_datasets/TAIR10_blastsets/
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Fig. 3 Tools and variables used in the experiment. Paired-end datasets of differing read lengths (50–1,000 bp) were mapped using Bowtie2 and
BWA-SW with either high (2 % mismatches) or low (14 % mismatches) mapping stringency. The de novo assemblies computed with Velvet and
Allpaths-LG were used as references, as well as the original A. thaliana reference sequence (control). All the resulting mappings underwent SNP
calling with the variant callers FreeBayes and GATK, with and without filtering for read mapping quality. The resulting SNPs were filtered by coverage
depth (< 150) and these call sets were compared to their unfiltered counterparts. For the final SNP counts, only biallelic entries with a SNP quality
score greater than 20 were used

distributed residuals with constant variance. The number
of FP SNPs was therefore analysed after a log10(N+1)
transformation, which improved the distribution of the
residuals. A random permutation test with 999 permuta-
tions was also run to obtain a non-parametric estimate of
the significances of each effect, and this gave very similar
probabilities to the usual ANOVA F probabilities. The
analysis was carried out using GenStat 16 for Windows
[21].

Results
Our strategy for exploring the origins of FP SNP gen-
eration is shown in Fig. 1. Sets of simulated reads
of varying sizes were sampled from the A. thaliana
genome sequence. To explore the effect of assembly on
FP SNP generation, two different reference sequences
were generated using the de novo assemblers Velvet and
Allpaths-LG. To simplify the design of the experiment,
we used only the 150 bp read length dataset for assem-
bly. Our choice of this read length was based on two
considerations: a) a large number of ongoing sequenc-
ing projects use Illumina Hiseq reads as their primary
source of sequence and the current maximum read length
for this is 150 bp (http://systems.illumina.com/systems/
hiseq_2500_1500/performance_specifications.ilmn), and
b) even projects involving the assembly of very large, com-
plex genomes such as wheat [22] use reads as short as this
or even shorter (barley [23], norway spruce [24]) as their
primary source of sequence.
To investigate variations in read mapping, the simu-

lated read sets described above were then mapped to
the two de novo genome assemblies, as well as the A.
thaliana reference genome, using two widely used read
mappers, Bowtie2 and BWA. The range of read lengths
chosen covers most of the currently available sequencing

technologies, with the exception of Pacific BioSciences
and Oxford Nanopore ([25], and updates at http://www.
molecularecologist.com/next-gen-fieldguide-2014/). The
latter two technologies produce longer reads but are cur-
rently associated with substantial error rates and their use
in variant calling is still in its early stages. The mappings
generated were then processed with two popular variant
callers, GATK and FreeBayes.

General observations
The range of FP SNP numbers observed in the experiment
varied from 0 to 36,621, depending upon the choice of ref-
erence sequence, tools and parameters. Out of 576 factor
level combinations, 211 contained zero FPs (Additional
file 1: Supplementary file snpNumbersStats.xlsx). These
included sets using the BWA mapper on the “strict” mis-
match setting with the GATK variant caller for all com-
binations of depth filtering/no depth filtering, all three
assembly types, MAPQ settings of 0 or 20, and the full
range of read lengths. Zero FP SNPs were also found
for sets using the BWA mapper on the “strict” mismatch
setting with the FreeBayes variant caller and a MAPQ
setting of 20 for all combinations of depth filtering/no
depth filtering, all three assembly types, and the full range
of read lengths. For the control assembly only, the FP
count remained at zero in the combinations above even
if the “relaxed” mismatch setting was used. The Bowtie2
mapper found zero FPs for the control assembly only
and read lengths of 150 bp or fewer, with all combina-
tions of depth filtering/no depth filtering, variant caller,
stringency and MAPQ settings, as well as on the “strict”
setting with 500 or 1000 bp reads. None of the mappings
against the de novo assemblies achieved a zero FP count
on the relaxed mismatch setting. At the other end of the
spectrum, the largest mean number of FPs encountered

http://systems.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn
http://systems.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn
http://www.molecularecologist.com/next-gen-fieldguide-2014/
http://www.molecularecologist.com/next-gen-fieldguide-2014/
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was 36,260.5 (300 bp reads, Allpaths assembly, relaxed
Bowtie2 mapping, MAPQ filter 0, FreeBayes, no depth
filtering).
The majority of factor level combinations in the con-

trol group (139 out of 192) contained no FP SNPs at
all, and most of the remainder had less than 1000 FP
SNPs (Additional file 1: Supplementary file snpNum-
bersStats.xlsx). There was, however, a large amount of
variability within the control group, and some call sets
contained very large numbers of FP SNPs. The worst per-
forming combination in the control group comprised 300
bp reads mapped with Bowtie2 using relaxed mapping,
variant-called with FreeBayes, using no depth filter and a
MAPQ filter of 0, and yielded an average of 20,471.5 FP
SNPs. The equivalent combination of tools using the strict
mapping setting resulted in an average of only 17.0 FPs,
a reduction of 3 orders of magnitude. This is a powerful
illustration of the drastic effect of mapping stringency on
FP SNP discovery.

Main effects and interactions among experimental factors
All factors, apart from experimental replicate, had highly
significant main effects on FP SNP number in the
multifactorial ANOVA (Table 1 and Additional file 1:
Supplementary file ANOVA_FullResults.xlsx). However,
there was a large number of highly significant higher-
order interaction terms in the ANOVA results, and these
indicatedmany complex interactions between experimen-
tal factors. The results presented here should be viewed
in the context of these interactions, as global means hide
much of the complexity of our findings. Figures 4 and 5
show trellis plots for the two major higher-order inter-
actions that summarise most of the variability attributed
to interaction terms. The equivalent numerical values are
shown in Tables 2 and 3. The residual term due to differ-
ences among the replicates accounted for less than 0.03 %
of the total variation.

Assembly
The reference sequence used had the most pronounced
effect on the rate of FP SNPs, accounting for 43.9 % of the
total variation in the data (Table 1), with a highly signifi-
cant main effect. There were significant interactions with
all six of the other factors. Mappings against the original
A. thaliana genome (Control) yielded comparatively few
FP SNPs in most cases (Figs. 4 and 5), while mappings
against our own de novo assemblies generally produced FP
SNP numbers orders of magnitude greater, with the Velvet
reference sequence outperforming the Allpaths sequence
slightly in most cases.

Stringency
Mapping stringency accounted for 10.8 % of the total vari-
ation in the data, making it the second most important
factor in the experiment (Table 1). The main effect in
the ANOVA was statistically highly significant, with the
global means suggesting a reduction of approximately one
order of magnitude in FP numbers for the “strict” setting
(log10-transformed means: relaxed 2.64; strict 1.50). This
effect was observable in the majority of interactions anal-
ysed here (Tables 2, 4, 5, and Figs. 4 and 5). The reduction
in FP numbers from applying the strict mismatch setting
was greatest for the combination of BWA and the two
poorer reference sequences, and for the combination of
Bowtie2 and the Control reference sequence with read
lengths of 300–1000 bp.

Mapping tools
This was the thirdmost important factor in FP SNP gener-
ation, in terms of the contribution to the overall variation
in the data, contributing 7.7 % of the total (Table 1).
On average, BWA produced fewer FPs than Bowtie2
(log10 transformed means: 1.59 vs 2.55 respectively) but
deviations from this pattern occurred depending on the
read length, MAPQ, mapping stringency and reference

Table 1 Main effects from the factorial Analysis of Variance (ANOVA). For the full list of all possible interaction terms please see the
Additional file 1: Supplementary file ANOVA_FullResults.xlsx (the residual term here is from the full ANOVA)

Source of variation d.f. s.s. m.s. v.r. F prob. perm prob. Percentage SS

Replicate stratum 1 0.01693 0.01693 8.82

Replicate.*Units* stratum

Length 5 40.79358 8.15872 4247.34 0.000 0.001 1.18

Assembly 2 1516.31545 758.15772 394688.33 0.000 0.001 43.90

Mapper 1 265.90685 265.90685 138428.09 0.000 0.001 7.70

Stringency 1 371.94519 371.94519 193630.46 0.000 0.001 10.77

MAPQ 1 55.69223 55.69223 28992.74 0.000 0.001 1.61

Variant caller 1 73.45412 73.45412 38239.38 0.000 0.001 2.13

Depth filter 1 5.92562 5.92562 3084.81 0.000 0.001 0.17

Residual 575 1.10452 0.00192
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Fig. 4 5-way interaction between assembly, mapper, read length, MAPQ, andmapping stringency. Trellis plots for the first major higher-order interaction
that summarise most of the variability attributed to interaction terms

sequence (Tables 2 and 4; Figs. 4 and 5). Most of these
occurred in the relaxed mappings with MAPQ_0 filter-
ing. For the short read mappings (50–150 bp) against the
Control reference with MAPQ_20 filtering, both mappers
performed equally well. However, even on the most con-
servative settings (strict mapping, MAPQ_20) and with
the best reference sequence (Control), Bowtie2 performed
poorly on the 300 bp reads, whereas on the longer reads
(500/1000 bp) its performance matched that of BWA
(Table 2).

Variant caller
The effect of the variant calling software, again, was statis-
tically highly significant but had interdependencies with
other factors. Global means suggested that GATK pro-
duced fewer FPs than FreeBayes but this only held true
for the MAPQ_0 call sets. When a MAPQ filter of 20 was
applied the GATK FP rates in most cases were either equal
to or slightly higher than those obtained with FreeBayes
(Tables 3 and 6).

MAPQ based filtering of SNPs
Read mapping quality based filtering of SNPs (0 versus 20)
also had a significant main effect, and while the global
means suggested that MAPQ filtering of SNPs reduces
FP numbers (log10 means: MAPQ_0 = 2.29; MAPQ_20 =
1.85), this did not apply universally. When filter-
ing for MAPQ_20, FP numbers were reduced for
the FreeBayes call sets but not for GATK call sets
(Table 6).

Read length
FP SNP numbers did not strictly decrease as a function of
read length (Figs. 4 and 5). This contradicts the assump-
tion that longer reads lead to fewer FP SNPs due to higher
mapping accuracy. Instead, FP SNP numbers in most call
sets were either flat when plotted against read length, or
showed an asymptotic increase with read length. Only the
BWA/MAPQ_0 call sets in the Control group showed a
decline of FP numbers with read length, with a minimum
at 500 bp and a slight increase at 1000 bp. In the Control
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Fig. 5 5-way interaction between assembly, mapper, variant caller, MAPQ, and read length. Trellis plots for the second major higher-order interaction
that summarise most of the variability attributed to interaction terms

group only, the Bowtie2 mappings had a sharp peak in FP
numbers for read length 300 bp, with the 500 bp and 1000
bp FP numbers still higher than those for the shorter reads
(50–150 bp), all of which had zero FPs regardless of any
other factors.

Depth filter
Filtering SNPs for read depth greater than 150x coverage
resulted in lower FP numbers, and the main effect for this
was statistically highly significant (Table 1). The magni-
tude of this effect depended on the quality of the reference
though, as shown in Table 7. The effect of applying depth
filtering was strong for the two de novo assemblies but rel-
atively small for the Control mappings against the intact
A. thaliana genome.

Readmismapping statistics, SNP annotation and genomic
distribution of FP SNP sites
The proportion of mismapped reads among reads with
alternate alleles at SNP locations was approximately 89 %
when averaged across all mappings containing FP SNPs

(Additional file 1: Supplementary data section SD.10).
Regions associated with FP SNPs were significantly
enriched for transposable element sequences (approxi-
mately 30 %) (Fig. 6; Additional file 1: Supplementary data
section SD.11), compared to approximately 6 % in the
whole genome annotation.
The distributions of the FP SNPs on the five A. thaliana

chromosomes are shown in Fig. 7. The great majority
of FP SNPs are found in the central (pericentromeric)
regions of chromosomes. The pericentromeric regions
contain high concentrations of repetitive transposable ele-
ments [26], suggesting that FP SNP generation is predom-
inantly associated with the inability of genome assemblers
and read mappers to cope with highly repetitious genome
sequences.

Discussion
Role of the reference sequence
One of the main factors we aimed to explore here was
the role of the reference sequence in FP SNP gener-
ation and how reference sequence quality affects read
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Table 2 First major higher-order interaction. Log10-transformed means for the 5-way interaction between assembly, mapper, read
length, MAPQ, and mapping stringency

Length 50 100 150 300 500 1000

Assembly Mapper Stringency MAPQ

Allpaths Bowtie2 Relaxed 0 3.743 3.736 3.807 4.084 3.863 3.975

Allpaths BWA Relaxed 0 3.692 3.752 3.823 3.906 3.922 3.947

Allpaths Bowtie2 Strict 0 3.349 3.445 3.480 3.529 3.571 3.621

Allpaths BWA Strict 0 1.729 1.755 1.760 1.759 1.758 1.739

Control Bowtie2 Relaxed 0 0.000 0.000 0.000 3.856 0.920 0.226

Control BWA Relaxed 0 1.547 1.112 0.736 0.254 0.000 0.369

Control Bowtie2 Strict 0 0.000 0.000 0.000 0.953 0.000 0.000

Control BWA Strict 0 1.248 0.866 0.595 0.270 0.075 0.075

Velvet Bowtie2 Relaxed 0 2.960 3.399 3.572 4.084 3.691 3.838

Velvet BWA Relaxed 0 2.972 3.313 3.491 3.628 3.720 3.799

Velvet Bowtie2 Strict 0 3.091 3.504 3.582 3.618 3.638 3.658

Velvet BWA Strict 0 1.779 1.806 1.834 1.834 1.825 1.798

Allpaths Bowtie2 Relaxed 20 3.615 3.589 3.668 3.917 3.716 3.857

Allpaths BWA Relaxed 20 3.594 3.695 3.775 3.880 3.882 3.914

Allpaths Bowtie2 Strict 20 3.143 3.306 3.366 3.448 3.507 3.562

Allpaths BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Control Bowtie2 Relaxed 20 0.000 0.000 0.000 3.451 2.497 2.246

Control BWA Relaxed 20 0.000 0.000 0.000 0.000 0.000 0.000

Control Bowtie2 Strict 20 0.000 0.000 0.000 0.648 0.000 0.000

Control BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Velvet Bowtie2 Relaxed 20 2.322 3.002 3.281 3.842 3.519 3.733

Velvet BWA Relaxed 20 2.438 3.018 3.300 3.492 3.637 3.748

Velvet Bowtie2 Strict 20 2.682 3.292 3.429 3.486 3.536 3.590

Velvet BWA Strict 20 0.000 0.000 0.000 0.000 0.000 0.000

Sed = 0.02191

Sed standard error of the difference

mismapping and consequent FP SNP accumulation. We
therefore mapped reads against the published genome of
A. thaliana, as well as de novo assemblies of our sim-
ulated NGS reads. The publicly available genome of A.
thaliana has been sequenced with Sanger technology [26]
and has undergone many years of labour-intensive man-
ual curation. This is in stark contrast to the reference
sequences for many non-model organisms which may
be the product of relatively limited sequencing, mini-
mal assembly effort and little subsequent quality control
or validation. In this scenario, significant swathes of the
genomemay be misassembled or not assembled at all, and
consequently read mismapping may occur on a large scale
because the true targets for reads are not available inmany
cases. This can lead to mismatches with the reference
sequence which produce FP SNPs that look inconspicuous
in every respect and are therefore difficult to remove by
filtering.

The difference in FP SNP numbers brought on by pro-
viding our own de novo assembled reference amounted
to several thousands as a result of misassembly or non-
assembly alone. The genome used here is small (approx.
125 Mbp) and contains relatively few repeats [26].
The effects observed here (and consequently false pos-
itive numbers) are likely to be much more pronounced
with larger, more complex genomes where misassem-
bly is much more prevalent. Large, complex genomes
of this kind are common in plants [27] and other
organisms.
We also observed significant numbers of FP SNPs in

some of the control call sets based on mapping against
theA. thaliana sequence. This was surprising, but seemed
to be mostly due to certain unfavourable combinations of
tools and parameters. The majority of call sets in the con-
trols (282 out of 384) contained no FP SNPs at all, and
most of the remainder had less than 1000 FP SNPs. All of
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Table 3 Second major higher-order interaction. Log10-transformed means for the 5-way interaction between assembly, mapper,
variant caller, MAPQ and read length

Length 50 100 150 300 500 1000

Assembly Mapper Variant caller MAPQ

Allpaths Bowtie2 FreeBayes 0 3.75 3.81 3.84 4.00 3.90 3.95

Allpaths BWA FreeBayes 0 3.68 3.72 3.75 3.77 3.77 3.73

Allpaths Bowtie2 GATK 0 3.34 3.37 3.45 3.61 3.53 3.65

Allpaths BWA GATK 0 1.74 1.78 1.84 1.90 1.91 1.96

Control Bowtie2 FreeBayes 0 0.00 0.00 0.00 2.76 0.63 0.08

Control BWA FreeBayes 0 2.80 1.98 1.33 0.52 0.08 0.44

Control Bowtie2 GATK 0 0.00 0.00 0.00 2.05 0.29 0.15

Control BWA GATK 0 0.00 0.00 0.00 0.00 0.00 0.00

Velvet Bowtie2 FreeBayes 0 3.65 3.82 3.88 4.10 3.92 3.92

Velvet BWA FreeBayes 0 3.61 3.64 3.71 3.76 3.76 3.75

Velvet Bowtie2 GATK 0 2.40 3.08 3.27 3.60 3.41 3.57

Velvet BWA GATK 0 1.14 1.48 1.62 1.70 1.78 1.85

Allpaths Bowtie2 FreeBayes 20 3.26 3.34 3.42 3.61 3.57 3.68

Allpaths BWA FreeBayes 20 1.72 1.77 1.81 1.87 1.89 1.90

Allpaths Bowtie2 GATK 20 3.50 3.56 3.62 3.76 3.65 3.74

Allpaths BWA GATK 20 1.87 1.92 1.96 2.01 2.00 2.02

Control Bowtie2 FreeBayes 20 0.00 0.00 0.00 1.95 1.34 1.23

Control BWA FreeBayes 20 0.00 0.00 0.00 0.00 0.00 0.00

Control Bowtie2 GATK 20 0.00 0.00 0.00 2.15 1.16 1.02

Control BWA GATK 20 0.00 0.00 0.00 0.00 0.00 0.00

Velvet Bowtie2 FreeBayes 20 2.48 3.12 3.34 3.64 3.54 3.66

Velvet BWA FreeBayes 20 1.20 1.50 1.64 1.74 1.80 1.85

Velvet Bowtie2 GATK 20 2.52 3.17 3.37 3.69 3.52 3.67

Velvet BWA GATK 20 1.24 1.52 1.66 1.75 1.84 1.90

Sed = 0.02191

the control call sets withmore than 1000 FP SNPs (n= 20)
were done on the relaxed mapping settings which brings
home the importance of conservative mapping even when
the reference sequence is well assembled.

Choice of tools for assembly, mapping and variant calling
This study did not aim to compare the performance of
specific tools involved in variant calling, but rather to pro-
vide proof of principle that false discovery rates in SNP
calling can be significantly affected by the quality of refer-
ence sequence, tool choice and tool parameters. Equally,
the current study did not aim to explore whether longer
reads, or indeed longer read fragments, provide better
de novo assemblies, as this has been covered elsewhere
[28, 29].
The assembly tools used for producing our de novo

reference sequences from the simulated reads com-
prised Velvet and Allpaths-LG. Velvet is one of the
first generation of short read assemblers but has had

continuous improvements and updates over many years
[9, 30]. Allpaths-LG is a relatively recent tool and devel-
opers have taken a new approach by requiring input of at
least two different fragment size libraries to ensure a high
quality assembly. Allpaths consistently performed well in
both of the Assemblathon competitions [31, 32], so we
were surprised that the reference sequence produced by
this tool was inferior to that produced by Velvet for most
of the major metrics in the QUAST analysis (N50, assem-
bly length, # misassemblies, genome fraction, # genes,
largest contig), and it consistently yielded greater numbers
of FP SNPs than the corresponding Velvet assemblies.
The two mapping tools used here, Bowtie2 and BWA,

are arguably among the most commonly used tools
for short read mapping. Both provide a good trade-off
between accuracy and performance [33, 34] and have
stood the test of time probably for this reason. On average,
BWA performed better in this study, but when mapping
short (50–150 bp) reads against the good quality Control
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Table 4 Mapper and mapping stringency interaction.
Log10-transformed means for the interaction between mapper
and mapping stringency

Stringency Relaxed Strict

Mapper

Bowtie2 2.7780 2.3343

BWA-SW 2.5099 0.6807

Sed = 0.00365

reference sequence with MAPQ_20 filtering, both tools
performed equally well, giving zero false positives.

SNP filtering
Filtering by MAPQ and maximum read depth both cut
FP SNP numbers significantly. Their contribution to the
overall variation in the data was relatively small but it
is very clear from the data that these filters should be
applied wherever it is appropriate. A notable exception
for this is data where large differences in read coverage
are expected, for example RNAseq — here, a depth filter
would be counterproductive. The effect of MAPQ filter-
ing was less clear-cut — applying the MAPQ_20 filter to
the GATK callsets actually increased FP numbers slightly
in this experiment. This is counterintuitive and requires
further investigation. For the FreeBayes call sets, FP num-
bers did drop when the MAPQ_20 filter was applied, and
it is clear from these results that this should be applied as
a matter of routine when using this variant caller.

Read length
The numbers of FP SNPs observed as a function of read
length ran counter to our prior expectation that longer
reads should result in fewer FP SNPs due to greater map-
ping specificity and therefore reduced mismapping rates.
We only observed this for the two MAPQ_0 BWA map-
pings against the Control reference sequence. For most
of the other call sets, FP SNP numbers increased with
read length. In the Bowtie2 mappings against the Con-
trol reference sequence, the pattern observed had a sharp

Table 5 Assembly type, mapper, and mapping stringency
interaction. Log10-transformed means for the interaction
between assembly type, mapper and mapping stringency

Mapper Bowtie2 BWA-SW

Stringency Relaxed Strict Relaxed Strict

Assembly

Allpaths-LG 3.7976 3.4439 3.8151 0.8750

Control 1.0996 0.1334 0.3349 0.2608

Velvet 3.4369 3.4256 3.3796 0.9063

Sed = 0.00633

Table 6 MAPQ and variant caller interaction. Log10-transformed
means for the interaction between MAPQ filter level and variant
caller

Variant caller FreeBayes GATK

MAPQ

0 2.8277 1.7635

20 1.8287 1.8830

Sed = 0.00365

peak for the 300 bp read mappings. The potential to
cause FP SNPs seems to be related to the length of the
read, providing that reads are mapped with the same mis-
match rate as length increases, as was the case in our
experiment. Every mismatch with the reference has the
potential to become a FP SNP if suitable numbers of
reads are mismapped together, and both longer reads and
greater mismatch rates exacerbate this problem in theory
(Fig. 8).
This is also illustrated by the example shown in Fig. 9.

Here, Tablet [35, 36] screenshots are shown of the same
region in mappings of different read lengths (only 50,
300 and 1000 bp shown for brevity) for what is other-
wise the same factor level combination (Allpaths reference
sequence, relaxed Bowtie2 mapping). This is a region that
is clearly prone to read mismapping and it would appear
from inspection of the 50 and 300 bp mappings alone that
the longer the reads, the more FP SNPs are generated.
However, the 1000 bp read mapping shows no signs of
SNPs, and it appears as though the 1000 bp reads from the
region that contributes the crossmapped reads in the 50
and 300 bp mappings simply have too many mismatches
to be mapped here. This suggests that greater mapping
specificity does play a role in this example, and for this
particular region the use of longer reads has prevented
mismapping and the ensuing FP SNPs. Visual inspection
of our data has produced many other examples where
the 1000 bp mapping instead contained even larger num-
bers of FP SNPs than any of the comparable shorter
read mappings, but also cases where the 50 bp mapping
was the only one containing any FP SNPs at all. Taken
together, this is indicative of local variation in the poten-
tial for longer reads having greater mapping specificity

Table 7 Assembly and depth filter interaction. Log10-transformed
means for the interaction between assembly and depth filter

Depth filter No Yes

Assembly

Allpaths 3.1273 2.8385

Control 0.4634 0.4509

Velvet 2.8516 2.7226

Sed = 0.00447



Ribeiro et al. BMC Bioinformatics  (2015) 16:382 Page 12 of 16

a b

c d

Fig. 6 SNP annotation. a General composition of the Arabidopsis thaliana annotation compared with the BLAST-based annotation results for the
SNP manifests from the first run replicates of (b) Allpaths-LG, (c) Velvet, and (d) the control runs (compiled)

— whether or not read length makes a difference clearly
depends on the underlying sequence context, and this
will have contributed a significant amount of noise to
our data which is obvious from both the plots and the
data analysis.

Fig. 7 SNP locations. Plot of SNP locations by chromosome from the
first Velvet assembly replicate (see Additional file 1: Supplementary
data section SD.12 for data from other runs). SNP events on the y axis
are ordered by their position on the chromosome

The potential of the longer reads to cause greater dam-
age seems to be mitigated at least to some extent by
their greater mapping specificity — the rate of increase
of FP SNP numbers with read length in this experiment
(Figs. 4 and 5) was not as pronounced as could be expected

Fig. 8Mismatches versus read length. Numbers of theoretically possible
mismatches per read as a function of read length and mismatch
settings
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Fig. 9 Tablet screenshots of read mismapping and ensuing FP SNPs. All screenshots show the same region on chromosome 1, which has been
mapped with reads from the correct region on chromosome 1, but also reads from chromosome 2. FP SNPs are visible as vertical, red dotted lines. In
this example, the 50 bp reads (top) introduce a small number of FP SNPs, the 300 bp (middle) reads introduce a substantially larger number, but in
the mapping of the 1,000 bp reads (bottom) there are no FP SNPs, presumably indicating that the 1,000 bp reads from the contaminating region on
chromosome 2 contain too many mismatches to be mapped here

from what is theoretically possible (Fig. 8). Our origi-
nal assumption was that longer reads map more specif-
ically, thereby reducing the potential for mismapping.
The expectation would then be that longer reads have
lower rates of mismapping than shorter reads. Informa-
tion about mismapping is readily available for this dataset
due to our use of simulated reads which retain informa-
tion about their origin in the read name. We analysed the
rates of mismapping (i.e. the percentage of reads at SNP
locations that contained the alternate allele and originated
from a different chromosome or a different region on the
same chromosome) for each call set and plotted these as a
function of both read length and assembly (Fig. 10).
Interestingly, the relationship between read length and

rates of mismapping appeared to depend on the refer-
ence sequence used. For the Allpaths-assembled reference
and the controls, rates of mismapping appeared to decline
with increasing read length (Fig. 10). For the Velvet-
assembled reference sequences, this trend appeared to be
reversed, and we currently have no explanation for this
phenomenon.

The picture emerging from this is that there are proba-
bly two opposing forces involved here. On the one hand,
there is the potential for longer reads to cause greater
number of FP SNPs by introducing greater numbers of
mismatches. On the other hand, we may have greater
mapping specificity in longer reads, which means fewer
reads get mismapped as read length increases, with an
accompanying decrease in the likelihood of SNPs being
called due to low alternate allele numbers. Within the cur-
rent experiment, we did not simulate reads of the kind of
lengths that are now being generated by e.g. the Pacific
Biosciences and Oxford Nanopore technologies, and it
would be highly interesting to explore in future exper-
iments whether mapping reads of several kilobases in
length genuinely improves mismapping.

Genomic patterns of FP SNP locations
Regions containing FP SNPs were strongly enriched for
transposable elements, reflecting the concentration of
repeat elements in these regions and a large proportion
of FP SNPs were located in the pericentromeric regions
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Fig. 10 Percentages of mismapped reads as a function of read length and type of reference assembly. Mismapped reads were defined as reads at SNP
locations that contained the alternate allele and originated from a different chromosome or a different region on the same chromosome. Boxplots
show means (thick black horizontal bar), 25th and 75th centiles (ends of rectangles), 10th and 90th centiles (whiskers) plus individual outliers (circles)

of the chromosomes, where such repetitive sequences are
prevalent [26]. We conclude that misassembly or non-
assembly of repeats or members of gene families in de
novo genome assembly was the prime cause of FP SNPs in
our study.

Conclusions
Our experiment has highlighted and ranked multiple fac-
tors that have significant effects on the generation of FP
SNPs during variant calling. First and foremost, the qual-
ity of the reference sequence is of paramount importance.
Fragmentation, misassembly and non-assembly of regions
within the reference sequence lead to read mapping tar-
gets being effectively unavailable, and the correspond-
ing reads mapping to incorrect locations, leading to FP
SNP accumulation. The second major determinant of FP
SNP numbers in our experiment is the stringency of the
readmapping, with relaxedmappings generally producing
larger numbers of FP SNPs than strict mappings. How-
ever, these differences were found to be large only for the
combination of Bowtie2, longer reads (300, 500, 1000 bp)
and high quality reference sequence, and BWA with the
poor quality reference sequences. This is an important
finding, as both the mappers used here are supplied
with relatively relaxed mismatch settings as defaults. We
strongly discourage users from running read mappers on
relaxed mismatch setting defaults to maximise the num-
bers of reads mapped. However, there is a caveat in that
very strict mappings may lead to false negative SNPs, and
more work is required to formulate an optimal approach
to determining a mismatch rate that minimises both false
positive and false negative SNPs.

The choice of mapper and variant caller also have sig-
nificant effects upon FP SNP discovery, as does the use of
MAPQ and depth filters for SNPs.
Read length was seen to play a comparatively minor

role in FP SNP generation, with a complex relationship
emerging between read length and FP SNP number. We
conclude that the potential for greater mapping speci-
ficity in longer reads is at least partially offset by the
increased numbers of mismatches they can contribute,
which potentially translates into greater numbers of FP
SNPs. Overall, we recommend that a good quality refer-
ence sequence is extremely important for mapping-based
variant calling, along with stringent mappings and appro-
priate filtering of SNPs by at least MAPQ and coverage
depth.
The above result highlights the importance of inter-

actions among the factors in a SNP discovery pipeline.
It is not sufficient just to specify individual parameter
values in isolation, as these can be advantageous or dis-
advantageous depending upon the choice of the other
factors.

Additional file

Additional file 1: Supplementary materials. This supplementary pack
file is comprised of the following ones: ANOVA_FullResults.xlsx – comprises
the multifactorial ANOVA results; avgPctOfMismapping.xlsx – details the
average percentages of reads containing the alternate allele and across the
mappings; readMappingStats.xlsx – brings the alignment rates of reads, in
the mappings, retrieved with the SAMtools flagstat command;
snpNumbersStats.xlsx – details the SNP numbers computed in the
experiment; SupplementalData.pdf – contains all the additional
information and files mentioned in the manuscript. (ZIP 1362 kb)
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