344 research outputs found

    A pooling-based genome-wide analysis identifies new potential candidate genes for atopy in the European Community Respiratory Health Survey (ECRHS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma and atopy are complex phenotypes with shared genetic component. In this study we attempt to identify genes related to these traits performing a two-stage DNA pooling genome-wide analysis in order to reduce costs. First, we assessed all markers in a subset of subjects using DNA pooling, and in a second stage we evaluated the most promising markers at an individual level.</p> <p>Methods</p> <p>For the genome-wide analysis, we constructed DNA pools from 75 subjects with atopy and asthma, 75 subjects with atopy and without asthma and 75 control subjects without atopy or asthma. In a second stage, the most promising regions surrounding significant markers after correction for false discovery rate were replicated with individual genotyping of samples included in the pools and an additional set of 429 atopic subjects and 222 controls from the same study centres.</p> <p>Results</p> <p><it>Homo sapiens </it>protein kinase-like protein SgK493 (<it>SGK493</it>) was found to be associated with atopy. To lesser extent mitogen-activated protein kinase 5 (<it>MAP3K5</it>), collagen type XVIII alpha 1 (<it>COL18A1</it>) and collagen type XXIX alpha 1 (<it>COL29A1</it>) were also found to be associated with atopy. Functional evidences points out a role for <it>MAP3K5</it>, <it>COL18A1 </it>and <it>COL29A1 </it>but the function of <it>SGK493 </it>is unknown.</p> <p>Conclusion</p> <p>In this analysis we have identified new candidate regions related to atopy and suggest <it>SGK493 </it>as an atopy locus, although these results need further replication.</p

    Rare and Frequent Promoter Methylation, Respectively, of TSHZ2 and 3 Genes That Are Both Downregulated in Expression in Breast and Prostate Cancers

    Get PDF
    Neoplastic cells harbor both hypomethylated and hypermethylated regions of DNA. Whereas hypomethylation is found mainly in repeat sequences, regional hypermethylation has been linked to the transcriptional silencing of certain tumor suppressor genes. We attempted to search for candidate genes involved in breast/prostate carcinogenesis, using the criteria that they should be expressed in primary cultures of normal breast/prostate epithelial cells but are frequently downregulated in breast/prostate cancer cell lines and that their promoters are hypermethylated.We identified several dozens of candidates among 194 homeobox and related genes using Systematic Multiplex RT-PCR and among 23,000 known genes and 23,000 other expressed sequences in the human genome by DNA microarray hybridization. An additional examination, by real-time qRT-PCR of clinical specimens of breast cancer, further narrowed the list of the candidates. Among them, the most frequently downregulated genes in tumors were NP_775756 and ZNF537, from the homeobox gene search and the genome-wide search, respectively. To our surprise, we later discovered that these genes belong to the same gene family, the 3-member Teashirt family, bearing the new names of TSHZ2 and TSHZ3. We subsequently determined the methylation status of their gene promoters. The TSHZ3 gene promoter was found to be methylated in all the breast/prostate cancer cell lines and some of the breast cancer clinical specimens analyzed. The TSHZ2 gene promoter, on the other hand, was unmethylated except for the MDA-MB-231 breast cancer cell line. The TSHZ1 gene was always expressed, and its promoter was unmethylated in all cases.TSHZ2 and TSHZ3 genes turned out to be the most interesting candidates for novel tumor suppressor genes. Expression of both genes is downregulated. However, differential promoter methylation suggests the existence of distinctive mechanisms of transcriptional inactivation for these genes

    On the Flavor Structure of Natural Composite Higgs Models & Top Flavor Violation

    Get PDF
    Abstract: We explore the up flavor structure of composite pseudo Nambu-Goldstone-boson Higgs models, where we focus on the flavor anarchic minimal SO(5) case. We identify the different sources of flavor violation in this framework and emphasise the differences from the anarchic Randall-Sundrum scenario. In particular, the fact that the flavor symmetry does not commute with the symmetries that stabilize the Higgs potential may constrain the flavor structure of the theory. In addition, we consider the interplay between the fine tuning of the model and flavor violation. We find that generically the tuning of this class of models is worsen in the anarchic case due to the contributions from the additional fermion resonances. We show that, even in the presence of custodial symmetry, large top flavor violating rate are naturally expected. In particular, t \u2192 cZ branching ratio of order of 10 125 is generic for this class of models. Thus, this framework can be tested in the next run of the LHC as well as in other future colliders. We also find that the top flavor violation is weakly correlated with the increase amount of fine tuning. Finally, other related flavor violation effects, such as t \u2192 ch and in the D system, are found to be too small to be observed by the current and near future colliders. \ua9 2014, The Author(s)

    THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children

    Get PDF
    Neurorehabilitation therapies exploiting the use-dependent plasticity of our neuromuscular system are devised to help patients who suffer from injuries or diseases of this system. These therapies take advantage of the fact that the motor activity alters the properties of our neurons and muscles, including the pattern of their connectivity, and thus their functionality. Hence, a sensor-motor treatment where patients makes certain movements will help them (re)learn how to move the affected body parts. But these traditional rehabilitation processes are usually repetitive and lengthy, reducing motivation and adherence to the treatment, and thus limiting the benefits for the patients

    The Genetic Effect of Copy Number Variations on the Risk of Type 2 Diabetes in a Korean Population

    Get PDF
    BACKGROUND: Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes-associated CNV in a Korean cohort. METHODOLOGY/PRINCIPAL FINDINGS: Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total nβ€Š=β€Š771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758-45999227 (Pβ€Š=β€Š8.6E-04, P(corr)β€Š=β€Š0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation. CONCLUSION/SIGNIFICANCE: We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations

    Carbohydrate Recognition by an Architecturally Complex Ξ±-N-Acetylglucosaminidase from Clostridium perfringens

    Get PDF
    CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-Ξ±-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-Ξ²-d-glucosamine-Ξ±-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-Ξ²-d-glucosamine-Ξ±-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract

    Hippocampal-Dependent Spatial Memory in the Water Maze is Preserved in an Experimental Model of Temporal Lobe Epilepsy in Rats

    Get PDF
    Cognitive impairment is a major concern in temporal lobe epilepsy (TLE). While different experimental models have been used to characterize TLE-related cognitive deficits, little is known on whether a particular deficit is more associated with the underlying brain injuries than with the epileptic condition per se. Here, we look at the relationship between the pattern of brain damage and spatial memory deficits in two chronic models of TLE (lithium-pilocarpine, LIP and kainic acid, KA) from two different rat strains (Wistar and Sprague-Dawley) using the Morris water maze and the elevated plus maze in combination with MRI imaging and post-morten neuronal immunostaining. We found fundamental differences between LIP- and KA-treated epileptic rats regarding spatial memory deficits and anxiety. LIP-treated animals from both strains showed significant impairment in the acquisition and retention of spatial memory, and were unable to learn a cued version of the task. In contrast, KA-treated rats were differently affected. Sprague-Dawley KA-treated rats learned less efficiently than Wistar KA-treated animals, which performed similar to control rats in the acquisition and in a probe trial testing for spatial memory. Different anxiety levels and the extension of brain lesions affecting the hippocampus and the amydgala concur with spatial memory deficits observed in epileptic rats. Hence, our results suggest that hippocampal-dependent spatial memory is not necessarily affected in TLE and that comorbidity between spatial deficits and anxiety is more related with the underlying brain lesions than with the epileptic condition per se

    Genetic studies of IgA nephropathy: past, present, and future

    Get PDF
    Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide and an important cause of kidney disease in young adults. Highly variable clinical presentation and outcome of IgAN suggest that this diagnosis may encompass multiple subsets of disease that are not distinguishable by currently available clinical tools. Marked differences in disease prevalence between individuals of European, Asian, and African ancestry suggest the existence of susceptibility genes that are present at variable frequencies in these populations. Familial forms of IgAN have also been reported throughout the world but are probably underrecognized because associated urinary abnormalities are often intermittent in affected family members. Of the many pathogenic mechanisms reported, defects in IgA1 glycosylation that lead to formation of immune complexes have been consistently demonstrated. Recent data indicates that these IgA1 glycosylation defects are inherited and constitute a heritable risk factor for IgAN. Because of the complex genetic architecture of IgAN, the efforts to map disease susceptibility genes have been difficult, and no causative mutations have yet been identified. Linkage-based approaches have been hindered by disease heterogeneity and lack of a reliable noninvasive diagnostic test for screening family members at risk of IgAN. Many candidate-gene association studies have been published, but most suffer from small sample size and methodological problems, and none of the results have been convincingly validated. New genomic approaches, including genome-wide association studies currently under way, offer promising tools for elucidating the genetic basis of IgAN

    Different Chitin Synthase Genes Are Required for Various Developmental and Plant Infection Processes in the Rice Blast Fungus Magnaporthe oryzae

    Get PDF
    Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases
    • …
    corecore