349 research outputs found

    Functional strength training versus movement performance therapy for upper limb motor recovery early after stroke: a RCT

    Get PDF
    BACKGROUND: Not all stroke survivors respond to the same form of physical therapy in the same way early after stroke. The response is variable and a detailed understanding of the interaction between specific physical therapies and neural structure and function is needed. OBJECTIVES: To determine if upper limb recovery is enhanced more by functional strength training (FST) than by movement performance therapy (MPT), to identify the differences in the neural correlates of response to (1) FST and (2) MPT and to determine whether or not pretreatment neural characteristics can predict recovery in response to (1) FST and (2) MPT. DESIGN: Randomised, controlled, observer-blind, multicentre trial with embedded explanatory investigations. An independent facility used computer-generated randomisation for participants’ group allocation. SETTING: In-patient rehabilitation, participants’ homes, university movement analysis facilities and NHS or university neuroimaging departments in the UK. PARTICIPANTS: People who were between 2 and 60 days after stroke in the territory of the anterior cerebral circulation, with some voluntary muscle contraction in the more affected upper limb but not full function. INTERVENTIONS: Routine rehabilitation [conventional physical therapy (CPT)] plus either MPT or FST in equal doses during a 6-week intervention phase. FST was progressive resistive exercise provided during training of functional tasks. MPT was therapist ‘hands-on’ sensory input and guidance for production of smooth and accurate movement. MAIN OUTCOMES: Action Research Arm Test (ARAT) score for clinical efficacy. Neural measures were made of corticocortical [fractional anisotropy (FA) from corpus callosum midline], corticospinal connectivity (asymmetry of corticospinal tracts FA) and resting motor threshold of paretic biceps brachii (pBB) and extensor carpi radialis muscles (derived from transcranial magnetic stimulation). ANALYSIS: Change in ARAT scores were analysed using analysis of covariance models adjusted for baseline variables and randomisation strata. Correlation coefficients were calculated between change in neural measures and change in ARAT score per group and for the whole sample. An interaction term was calculated for each baseline neural measure and ARAT score change from baseline to outcome. RESULTS: A total of 288 participants were randomised [mean age 72.2 (standard deviation 12.5) years; mean ARAT score of 25.5 (18.2); n = 283]. For the 240 participants with ARAT measurements at baseline and outcome, the mean change scores were FST + CPT = 9.70 (11.72) and MPT + CPT = 7.90 (9.18). The group difference did not reach statistical significance (least squares mean difference 1.35, 95% confidence interval –1.20 to 3.90; p = 0.298). Correlations between ARAT change scores and baseline neural values ranged from –0.147 (p = 0.385) for whole-sample corticospinal connectivity (n = 37) to 0.199 (p = 0.320) for MPT + CPT resting motor threshold pBB (n = 27). No statistically significant interaction effects were found between baseline neural variables and change in ARAT score. There were no differences between groups in adverse events. LIMITATIONS: The number of participants in the embedded explanatory investigation was lower than expected. CONCLUSIONS: The small difference in upper limb improvement in response to FST and MPT did not reach statistical significance. Baseline neural measures neither correlated with upper limb recovery nor predicted therapy response. FUTURE WORK: Needs to continue investigation of the variability of response to specific physical therapies in people early after stroke. TRIAL REGISTRATION: Current Controlled Trials ISRCTN19090862 and National Research Ethics Service reference number 11/EE/0524. FUNDING: This project was funded by the Efficacy and Mechanism Evaluation programme, a Medical Research Council and National Institute for Health Research partnership

    Association of physical function with predialysis blood pressure in patients on hemodialysis

    Full text link
    BACKGROUND: New information from various clinical settings suggests that tight blood pressure control may not reduce mortality and may be associated with more side effects. METHODS: We performed cross-sectional multivariable ordered logistic regression to examine the association between predialysis blood pressure and the short physical performance battery (SPPB) in a cohort of 749 prevalent hemodialysis patients in the San Francisco and Atlanta areas recruited from July 2009 to August 2011 to study the relationship between systolic blood pressure and objective measures of physical function. Mean blood pressure for three hemodialysis sessions was analyzed in the following categories: <110 mmHg, 110-129 mmHg (reference), 130-159 mmHg, and ≥160 mmHg. SPPB includes three components: timed repeated chair stands, timed 15-ft walk, and balance tests. SPPB was categorized into ordinal groups (≤6, 7-9, 10-12) based on prior literature. RESULTS: Patients with blood pressure 130-159 mmHg had lower odds (OR 0.57, 95% CI 0.35-0.93) of scoring in a lower SPPB category than those whose blood pressure was between 110 and 129 mmHg, while those with blood pressure ≥160 mmHg had 0.56 times odds (95% CI 0.33-0.94) of scoring in a lower category when compared with blood pressure 110-129 mmHg. When individual components were examined, blood pressure was significantly associated with chair stand (130-159 mmHg: OR 0.59, 95% CI 0.38-0.92) and gait speed (≥160 mmHg: OR 0.59, 95% CI 0.35-0.98). Blood pressure ≥160 mmHg was not associated with substantially higher SPPB score compared with 130-159 mmHg. CONCLUSIONS: Patients with systolic blood pressure at or above 130 mmHg had better physical performance than patients with lower blood pressure in the normotensive range. The risk-benefit tradeoff of aggressive blood pressure control, particularly in low-functioning patients, should be reexamined

    Silencing of Aphid Genes by dsRNA Feeding from Plants

    Get PDF
    RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control

    The longitudinal changes of BOLD response and cerebral hemodynamics from acute to subacute stroke. A fMRI and TCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.</p> <p>This study investigated whether any impairment of cerebral hemodynamics that occurs during the acute and the subacute phases of ischemic stroke is related to changes in BOLD response.</p> <p>We enrolled six aphasic patients affected by acute stroke. All patients underwent a Transcranial Doppler to assess cerebral autoregulation (Mx index) and fMRI to evaluate the amplitude and the peak latency (time to peak-TTP) of BOLD response in the acute (i.e., within four days of stroke occurrence) and the subacute (i.e., between five and twelve days after stroke onset) stroke phases.</p> <p>Results</p> <p>As patients advanced from the acute to subacute stroke phase, the affected hemisphere presented a BOLD TTP increase (p = 0.04) and a deterioration of cerebral autoregulation (Mx index increase, p = 0.046). A similar but not significant trend was observed also in the unaffected hemisphere. When the two hemispheres were grouped together, BOLD TTP delay was significantly related to worsening cerebral autoregulation (Mx index increase) (Spearman's rho = 0.734; p = 0.01).</p> <p>Conclusions</p> <p>The hemodynamic response function subtending BOLD signal may present a delay in peak latency that arises as patients advance from the acute to the subacute stroke phase. This delay is related to the deterioration of cerebral hemodynamics. These findings suggest that remodeling the fMRI hemodynamic response function in the different phases of stroke may optimize the detection of BOLD signal changes.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks

    Get PDF
    BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network

    Variation in GP decisions on antihypertensive treatment in oldest-old and frail individuals across 29 countries

    Get PDF
    BACKGROUND: In oldest-old patients (>80), few trials showed efficacy of treating hypertension and they included mostly the healthiest elderly. The resulting lack of knowledge has led to inconsistent guidelines, mainly based on systolic blood pressure (SBP), cardiovascular disease (CVD) but not on frailty despite the high prevalence in oldest-old. This may lead to variation how General Practitioners (GPs) treat hypertension. Our aim was to investigate treatment variation of GPs in oldest-olds across countries and to identify the role of frailty in that decision. METHODS: Using a survey, we compared treatment decisions in cases of oldest-old varying in SBP, CVD, and frailty. GPs were asked if they would start antihypertensive treatment in each case. In 2016, we invited GPs in Europe, Brazil, Israel, and New Zealand. We compared the percentage of cases that would be treated per countries. A logistic mixed-effects model was used to derive odds ratio (OR) for frailty with 95% confidence intervals (CI), adjusted for SBP, CVD, and GP characteristics (sex, location and prevalence of oldest-old per GP office, and years of experience). The mixed-effects model was used to account for the multiple assessments per GP. RESULTS: The 29 countries yielded 2543 participating GPs: 52% were female, 51% located in a city, 71% reported a high prevalence of oldest-old in their offices, 38% and had >20 years of experience. Across countries, considerable variation was found in the decision to start antihypertensive treatment in the oldest-old ranging from 34 to 88%. In 24/29 (83%) countries, frailty was associated with GPs' decision not to start treatment even after adjustment for SBP, CVD, and GP characteristics (OR 0.53, 95%CI 0.48-0.59; ORs per country 0.11-1.78). CONCLUSIONS: Across countries, we found considerable variation in starting antihypertensive medication in oldest-old. The frail oldest-old had an odds ratio of 0.53 of receiving antihypertensive treatment. Future hypertension trials should also include frail patients to acquire evidence on the efficacy of antihypertensive treatment in oldest-old patients with frailty, with the aim to get evidence-based data for clinical decision-making
    corecore