1,196 research outputs found

    Room temperature plasmon laser by total internal reflection

    Full text link
    Plasmon lasers create and sustain intense and coherent optical fields below light's diffraction limit with the unique ability to drastically enhance light-matter interactions bringing fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications. However, these important applications require room temperature operation, which remains a major hurdle. Here, we report a room temperature semiconductor plasmon laser with both strong cavity feedback and optical confinement to 1/20th of the wavelength. The strong feedback arises from total internal reflection of surface plasmons, while the confinement enhances the spontaneous emission rate by up to 20 times.Comment: 8 Page, 2 Figure

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China

    Get PDF
    Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change

    Tire Defect Detection Based on Faster R-CNN

    Get PDF
    The tire defect detection method can help the rehabilitation robot to achieve autonomous positioning function and improve the accuracy of the robot system behavior. Defects such as foreign matter sidewall, foreign matter tread, and sidewall bubbles will appear in the process of tire production, which will directly or indirectly affect the service life of the tire. Therefore, a novel and efficient tire defect detection method was proposed based on Faster R-CNN. At preprocessing stage, the Laplace operator and the homomorphic filter were used to sharpen and enhance the data set, the gray values of the image target and the background were significantly different, which improved the detection accuracy. Moreover, data expansion was used to increase the number of images and improve the robustness of the algorithm. To promote the accuracy of the position detection and identification, the proposed method combined the convolution features of the third layer and the convolution features of the fifth layer in the ZF network (a kind of convolution neural network). Then, the improved ZF network was used to extract deep characteristics as inputs for Faster R-CNN. From the experiment, the proposed faster R-CNN defect detection method can accurately classify and locate the tire X-ray image defects, and the average test recognition rate is up to 95.4%. Moreover, if there are additional types of defects that need to be detected, then a new detection model can be obtained by fine-tuning the network

    Fructose Modulates Cardiomyocyte Excitation-Contraction Coupling and Ca2+ Handling In Vitro

    Get PDF
    BACKGROUND: High dietary fructose has structural and metabolic cardiac impact, but the potential for fructose to exert direct myocardial action is uncertain. Cardiomyocyte functional responsiveness to fructose, and capacity to transport fructose has not been previously demonstrated. OBJECTIVE: The aim of the present study was to seek evidence of fructose-induced modulation of cardiomyocyte excitation-contraction coupling in an acute, in vitro setting. METHODS AND RESULTS: The functional effects of fructose on isolated adult rat cardiomyocyte contractility and Ca²⁺ handling were evaluated under physiological conditions (37°C, 2 mM Ca²⁺, HEPES buffer, 4 Hz stimulation) using video edge detection and microfluorimetry (Fura2) methods. Compared with control glucose (11 mM) superfusate, 2-deoxyglucose (2 DG, 11 mM) substitution prolonged both the contraction and relaxation phases of the twitch (by 16 and 36% respectively, p<0.05) and this effect was completely abrogated with fructose supplementation (11 mM). Similarly, fructose prevented the Ca²⁺ transient delay induced by exposure to 2 DG (time to peak Ca²⁺ transient: 2 DG: 29.0±2.1 ms vs. glucose: 23.6±1.1 ms vs. fructose +2 DG: 23.7±1.0 ms; p<0.05). The presence of the fructose transporter, GLUT5 (Slc2a5) was demonstrated in ventricular cardiomyocytes using real time RT-PCR and this was confirmed by conventional RT-PCR. CONCLUSION: This is the first demonstration of an acute influence of fructose on cardiomyocyte excitation-contraction coupling. The findings indicate cardiomyocyte capacity to transport and functionally utilize exogenously supplied fructose. This study provides the impetus for future research directed towards characterizing myocardial fructose metabolism and understanding how long term high fructose intake may contribute to modulating cardiac function

    Mechanosensitive Enteric Neurons in the Myenteric Plexus of the Mouse Intestine

    Get PDF
    BACKGROUND: Within the gut the autonomous enteric nervous system (ENS) is able to sense mechanical stimuli and to trigger gut reflex behaviour. We previously proposed a novel sensory circuit in the ENS which consists of multifunctional rapidly adapting mechanosensitive enteric neurons (RAMEN) in the guinea pig. The aim of this study was to validate this concept by studying its applicability to other species or gut regions. METHODOLOGY/PRINCIPAL FINDINGS: We deformed myenteric ganglia in the mouse small and large intestine and recorded spike discharge using voltage sensitive dye imaging. We also analysed expression of markers hitherto proposed to label mouse sensory myenteric neurons in the ileum (NF145kD) or colon (calretinin). RAMEN constituted 22% and 15% of myenteric neurons per ganglion in the ileum and colon, respectively. They encoded dynamic rather than sustained deformation. In the colon, 7% of mechanosensitive neurons fired throughout the sustained deformation, a behaviour typical for slowly adapting echanosensitive neurons (SAMEN). RAMEN and SAMEN responded directly to mechanical deformation as their response remained unchanged after synaptic blockade in low Ca(++)/high Mg(++). Activity levels of RAMEN increased with the degree of ganglion deformation. Recruitment of more RAMEN with stronger stimuli may suggest low and high threshold RAMEN. The majority of RAMEN were cholinergic but most lacked expression of NF145kD or calretinin. CONCLUSIONS/SIGNIFICANCE: We showed for the first time that fundamental properties of mechanosensitive enteric neurons, such as firing pattern, encoding of dynamic deformation, cholinergic phenotype and their proportion, are conserved across species and regions. We conclude that RAMEN are important for mechanotransduction in the ENS. They directly encode dynamic changes in force as their firing frequency is proportional to the degree of deformation of the ganglion they reside in. The additional existence of SAMEN in the colon is likely an adaptation to colonic motor patterns which consist of phasic and tonic contractions

    An integration of enhanced social force and crowd control models for high-density crowd simulation

    Get PDF
    Social force model is one of the well-known approaches that can successfully simulate pedestrians’ movements realistically. However, it is not suitable to simulate high-density crowd movement realistically due to the model having only three basic crowd characteristics which are goal, attraction, and repulsion. Therefore, it does not satisfy the high-density crowd condition which is complex yet unique, due to its capacity, density, and various demographic backgrounds of the agents. Thus, this research proposes a model that improves the social force model by introducing four new characteristics which are gender, walking speed, intention outlook, and grouping to make simulations more realistic. Besides, the high-density crowd introduces irregular behaviours in the crowd flow, which is stopping motion within the crowd. To handle these scenarios, another model has been proposed that controls each agent with two different states: walking and stopping. Furthermore, the stopping behaviour was categorized into a slow stop and sudden stop. Both of these proposed models were integrated to form a high-density crowd simulation framework. The framework has been validated by using the comparison method and fundamental diagram method. Based on the simulation of 45,000 agents, it shows that the proposed framework has a more accurate average walking speed (0.36 m/s) compared to the conventional social force model (0.61 m/s). Both of these results are compared to the real-world data which is 0.3267 m/s. The findings of this research will contribute to the simulation activities of pedestrians in a highly dense population
    corecore