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Abstract. The tire defect detection method can help the rehabilitation robot to 

achieve autonomous positioning function and improve the accuracy of the robot 

system behavior. Defects such as foreign matter sidewall, foreign matter tread, 

and sidewall bubbles will appear in the process of tire production, which will 

directly or indirectly affect the service life of the tire. Therefore, a novel and ef-

ficient tire defect detection method was proposed based on Faster R-CNN. At 

preprocessing stage, the Laplace operator and the homomorphic filter were used 

to sharpen and enhance the data set, the gray values of the image target and the 

background were significantly different, which improved the detection accura-

cy. Moreover, data expansion was used to increase the number of images and 

improve the robustness of the algorithm. To promote the accuracy of the posi-

tion detection and identification, the proposed method combined the convolu-

tion features of the third layer and the convolution features of the fifth layer in 

the ZF network (a kind of convolution neural network). Then, the improved ZF 

network was used to extract deep characteristics as inputs for Faster R-CNN. 

From the experiment, the proposed faster R-CNN defect detection method can 

accurately classify and locate the tire X-ray image defects, and the average test 

recognition rate is up to 95.4%. Moreover, if there are additional types of de-

fects that need to be detected, then a new detection model can be obtained by 

fine-tuning the network. 

Keywords: rehabilitation robot, Faster R-CNN, improved ZF convolutional 

neural networks, recognition rate, tire defect detection. 

1 Introduction 

The tire defect detection method has a strong self-learning ability, which can help the 

robot achieve the function of auto-matic visual recognition [1-2]. It meets the re-

quirements of rehabilitation robots for smart devices, makes medical services more 

accurate, and provides patients with more advanced and effective rehabilitation treat-

ment processes [3]. A radial tire is widely recognized because it has the advantages of 

high speed, energy saving, durability, safety, comfort, and driving performance. The 
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radial tire manufacturing process is complex and requires high precision. Quality 

problems often occur in the manufacturing process, which will directly or indirectly 

affect the service life of the tire, and even endanger personal safety [4-5]. Therefore, it 

is necessary to carry out the non-destructive test on each tire before leaving the facto-

ry, which can help persons quickly adjust the machinery production equipment in the 

tire production process. This test can save production material costs and improve tire 

quality. 

At present, the tire defect detection methods generally employ an X-ray machine to 

obtain the images of the tire, and then workers observe the obtained images to identify 

whether the tires have the defects and classify these defects according to the shape 

and gray features of the images [6]. However, artificial visual inspection is an objec-

tive method. The detection results are easily affected by the level of workers' profes-

sionalism. It is easy to misjudge when the workload and intensity of the workers are 

large [7-8]. Therefore, in this paper, we propose a tire detection method based on 

Faster R-CNN. Using the convolutional neural network to obtain the feature point 

information of the image and analyze the upper semantics, and then replace the hu-

man eye to complete the task. It is applied to the research of rehabilitation robots, and 

it accomplishes a part of tasks that human eyes cannot judge competent in a special 

environment, and meets the needs of rehabilitation robots for high-precision position-

ing of smart devices. The tire detection system is used to realize the human eye guid-

ance function of the rehabilitation robot, and the convolutional neural network and 

image processing technology are combined to complete the specific tasks of the reha-

bilitation robot in the given environment. The rapid development of artificial intelli-

gence is of great significance to the development of rehabilitation robot automation. 

In 2014, Ross Girshick et al. [9] designed the R-CNN target detection framework 

with a regional nomination strategy and CNN feature extraction algorithm, which 

made a great breakthrough in target classification and location tasks. To solve the 

problem of low efficiency and large training space of R-CNN, Girshick et al. [10] 

proposed the Fast R-CNN method. Firstly, Conv Character Map was obtained by 

carrying out the convolution operation of the image. At the same time, the region of 

interest (ROI) was obtained using the Selective Search method, and then the candidate 

region was mapped to the feature map of the CNN last layer. The image only needs to 

extract features once, which reduces the computational complexity. However, it still 

does not solve the problem of the slow computational speed of a selective search al-

gorithm. The Faster R-CNN was proposed by Ren et al.[11], which used the region 

proposal networks (RPN) to select the proposal regions on the premise of absorbing 

the characteristics of Fast R-CNN. Moreover, most of the prediction is completed 

under the GPU, which greatly improves the detection speed and accuracy. 

Organization of the paper as follows. Section 2 provides a review of the literatures 

regarding the development process of deep learning. In Section 3, we illustrate our 

algorithm elaborately. Section 4 provides the experimental results and Section 5 

shows the conclusion of the paper. 
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2 Related Work 

In recent years, the problem of tire defect detection has attracted a lot of attention for 

domestic researchers. For example, Q Liu et al. [12] of Shandong University of Fi-

nance and Economics proposed a tire defect detection algorithm based on Radon 

transformation in 2015; Bin Zhang et al. [13] of Qingdao University Soft Control 

Enterprise proposed a tire X-ray image impurity detection technology based on image 

processing in 2016. The technology has been completed in four steps: histogram col-

umn equalization, Fourier transform and low-pass filtering, binarization and closed 

operation, and based on which the tire bead impurity defects were identified. Howev-

er, these methods can only detect and identify the tire bead impurity defects. Xuehong 

Cui et al. [14] of Qingdao University of Science and Technology proposed a tire X-

ray image defect detection method based on inverse transformation of principal com-

ponent residual information in 2017. The principal component analysis (PCA) is used 

to reconstruct the dominant texture of tire image, and then the defect can be found by 

subtracting the original image from the reconstructed dominant texture image (only 

using the small remaining eigenvalues and corresponding eigenvectors to restore the 

defect and noise). It can detect foreign matter sidewall, however, the extraction fea-

tures are complex and require people to participate in the selection. 

The above methods for tire defect detection are all based on traditional machine vi-

sion [15]. The features used for tire defect detection are artificially selected and de-

signed [16], and the obtained features are jagged and poorly robust. Therefore, these 

methods are suitable for simple defect detection. The automatic recognition and local-

ization of tire X-ray images with different defect areas, various shapes and complex 

background areas are powerless. 

In 2006, Hinton et al. [17] proposed in-depth learning to solve this problem. In-

depth learning can automatically learn the features of the target according to the train-

ing dataset, and abstract the high-level feature expression by integrating the transfor-

mation features of each layer from low to high, which makes classification and loca-

tion easier. Since then, the emergence of excellent algorithms based on convolutional 

neural networks, and played a great role in target detection. 

In this paper, in order to improve the recognition accuracy and the location accura-

cy, the tire defect location and recognition method is improved based on the Faster R-

CNN. At preprocessing stage, the Laplace operator and the homomorphic filter are 

used to sharpen and enhance the data set due to the gray values of the image target 

and the background was significantly different. Moreover, we combine the convolu-

tion features of the third layer and the fifth layer of the ZF network as the input of the 

RPN layer. The convolution feature of the layer is combined as the input of the RPN 

layer; since the output of the third layer of the ZF network is 384 dimensions, and the 

output of the fifth layer is 256 dimensions, the convolution operation of   is performed 

after the output of the third layer, so that its output is also 256 dimensions. The out-

puts of the layers are added. 

Fig. 1 shows the specific process. Faster R-CNN network structure mainly consists 

of three parts: feature extraction layer, RPN (Regional Proposal Network) layer, Fast 

R-CNN layer and so on. In the feature extraction layer, the ZF network is used to 
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extract the feature map of the input image. The RPN layer is used to preliminarily 

extract regions of interest (ROI). Fast R-CNN layer is used to locate and identify tire 

defects. 
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Fig. 1. Target detection framework based on Faster R-CNN 

In this paper, the faster R-CNN and ZF network [10] (a kind of convolution neural 

network) is introduced to solve the task of the tire defect recognition and location, 

which provides a more concise and efficient method for industrial tire defect detec-

tion. 

3 Proposed Method 

3.1 X-Ray Image Defect Detection Of Tire 

The X-ray images of tires mainly contain three types of defects: foreign matter side-

wall, foreign matter tread and sidewall bubble, as indicated by the green arrow in Fig. 

2. Fig. 2 shows the flowchart of the proposed method. The red arrow is rectangular 

boxes. The training set is pre-processed before network training: homomorphic filter-

ing is used to enhance the training set. 
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Fig. 2. Defect detection process based on Faster R-CNN 

Using X-ray machine to make X-ray image of 360 degree tire irradiation, because 

the obtained X-ray image contains some noise. Target defects such as foreign matter 

sidewall and sidewall bubble, the gray difference between the target and background 

is very small in some areas. In this case, it is difficult for the human eye to find and 

recognize the target, which has negative for the labeling of the rectangular box and 

the training of the model, so it is necessary to do pre-processing to enhance the gray 

difference between these targets and background. This method is divided into two 

stages: training stage and testing stage. 

Training stage: The input data of the training model was increased by the image 

geometric transformation method. And the rotation, the horizontal offset, the vertical 

offset, the scaling and horizontal flip were selected. The data augmentation method 

enables the convolutional neural network to learn more image invariant features and 

avoid overfitting. Defect detection model is obtained by determining the type of target 

to be detected (foreign matter sidewall, foreign matter tread, and sidewall bubble), 

selecting the network and training. 

Testing stage: Testing the samples to be tested with the obtained model. The deep 

learning framework used in the experiment is MXNet, which is accelerated by GPU, 

and the feature extraction network is ZF. The image data used in this paper are pro-

vided by Soft Holding Company Limited. 

Fig. 3 shows the labeled dataset sample. The tire defect detection dataset is con-

structed according to PASCAL VOC dataset format standard. The rectangular box is 

labeled on the image by Labelme. Fig. 3(a)-(d) show the foreign matter sidewall. Fig. 

3(e)-(h) show the foreign matter tread. Fig. 3(i)-(l) show the sidewall bubble. An 

XML file is automatically generated for each image to record various information of 

the image, and the bounding box coordinate information. 
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)  

Fig. 3. Tire defect dataset sample 

The training dataset contains 1022 pictures, including foreign matter sidewall 

(215), foreign matter tread (155), sidewall bubble (126) and normal tire X-ray images 

(including sidewall/ tread images) (526). The number of pictures in brackets repre-

sents the number of pictures. The proportion of each kind of defect sample is con-

sistent with the frequency of occurrence of such defects. Defect image is the smallest 

rectangular image containing defects. Because of the uncertainty of defects in produc-

tion, the length, width and size of defect image are different and distributed in 

50 50  ～ 200 500  pixel. In order to unify the size of defective images to meet 

the requirements of the algorithm, and to maximize the representation of image de-

fects, while reducing computational complexity, In this paper, each image is segment-

ed into the sidewall and tread regions, and the long sidewall and tread regions are 

divided into 8 segments and then the training dataset is composed of these images. 

Improved Convolutional Neural Network  

Convolutional neural network is specially designed for image recognition. It benefits 

from its network structure similar to biological neural network, which reduces the 

complexity of network model and the number of weights [18-21]. In this paper, ZF 

network is used to extract image features. 

Fig. 4 shows the framework of the ZF network. The process of ZF network detec-

tion is: 

 (1) The image of   size is used as input, and the feature is extracted automatically 

by convolution layer; 

 (2) Then the RPN is used to generate high quality proposal box, each image is 

about 300 proposal boxes; 

 (3) The proposal boxes are mapped to the last convolution feature map of CNN; 

 (4) The ROI pooling layer is used to fix the size of each proposal box; 
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 (5) Classification layer and boundary regression layer is used to make specific 

classification judgment and accurate border regression for the proposal areas. 

RPN
RoI Pooling

FC Cls loss

Bbox Reg 

loss

Conv1

Conv3 Conv5

 

Fig. 4. Framework of the ZF network 

Fig. 5 shows the framework of the improved ZF network. From the above detec-

tion process, we can see that only the last layer of convolution is used in the recogni-

tion of ZF network. Since the image information can be extracted into the abstract 

feature of the target after it passes through the multi-layer convolution layer, Alt-

hough these abstract features are helpful for judging the specific categories of targets, 

after multi-layer convolution feature extraction, the details of the target will also be 

lost, which makes the extracted features less sensitive to the size and location of the 

target. Therefore, if only the last layer of convolutional feature information is used to 

locate and identify in the detection process, there will be a great error for the smaller 

defect area, because the smaller defect target (if the defect area is 2 5 2 5  pixel) has 

only one or several convolution features after passing through five layers of convolu-

tion layer. Such little information not only has a negative impact on location preci-

sion, but also influences the recognition of the target. 

RPN
RoI Pooling

FC Cls loss

Bbox Reg 

loss

Conv1

Conv3 Conv5

 

Fig. 5. Framework of the improved ZF network 

According to the above situation, inspired by the Fully Convolutional Networks 

(FCN) on the success of the Semantic Segmentation task proposed by Jonathan Long 

et al. [22], to improve the recognition accuracy and location accuracy, the tire defect 

location and recognition method is improved based on Faster R-CNN. Based on the 

Faster R-CNN network, this paper combines the convolution features of the third 

layer and the fifth layer of ZF network as the input of RPN layer. The convolution 

feature of the layer is combined as the input of RPN layer; since the output of the 
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third layer of ZF network is 384 dimensions, and the output of the fifth layer is 256 

dimensions, the convolution operation of   is done after the output of the third layer, 

so that the output of the third layer is 256 dimensions, and then the output of the fifth 

layer is added. Because the shallower convolution layer can extract local features in 

the feature extraction process of the target detection network, the deeper convolution 

layer can extract more abstract features, if the features of multiple different layers can 

be combined, it will help target detection [23]. 

The purpose of improving ZF network in this paper is to avoid gradient explosion, 

improve learning rate, and extract double depth features of defect samples to improve 

the classification performance of the network. 

Region Proposal Network 

Fig. 6 shows the framework of the Region Proposal Network (RPN). The RPN is a 

full-convolution network. The RPN network can quickly generate anchor boxes of 

different sizes, and determine the probability of the target or background of the image 

in the frame for preliminary extraction of Region of Interest (ROI), which solves the 

speed problem of the Selective Search (SS) [24], and greatly improves the target de-

tection speed. The specific process of constructing the RPN is to use a small sliding 

window (  Convolution Kernel) to scan the feature map of the final convolution. After 

sliding convolution, a d-D vector is mapped. Finally, the d-D vector is sent to two 

fully connected layers, the regression layer and the classification layer. In each sliding 

window,  region proposal boxes are predicted at the same time, so the regression layer 

has   outputs to encode the coordinates of   region proposal boxes, and the classifica-

tion layer outputs   scores to estimate the probability that each region proposal box is 

a target/non-target. 

sliding window

Feature maps

classification 

layer

256-d

2k score 4k score K anchor boxes

regression 

layer

 

Fig. 6. Framework of the Region Proposal Network 

The RPN network uses a Bounding Box Regression (BBox) to generate an ROI, 

which loss function is defined as (1). 
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The total loss function of the RPN network is defined as (4). 
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Where, i  represents the window index value generated by RPN in a single image 

sample feature graph, 
i

P  represents probability indicating that the window is a target,   

*

i
P  represents the predictive probability of the GT, 

c ls
N is the normalized value of the 

classification term, i.e. the batch number 256; 
r e g

N is normalized value of regression 

term,   is weight value used to balance the two kinds of losses. In this paper, we set 

1   to make the two weights approximately equal. 

Fast R-CNN Network 

In practical calculation, 1000 ROIs are provided by RPN network, and 300 of them 

are randomly selected for Fast RCNN network training. The positive and negative 

samples are judged by Intersection over Union (IOU) [25]. In order to ensure the 

quality of positive samples, when IOU > 0.6, the ROI is determined to be positive 

sample; when IOU < 0.2, it is negative sample. Fast R-CNN uses pooling to process 

ROI of different sizes to ensure that input vector dimensions are the same when enter-

ing the full connection layer. ROI pooling input is divided into two parts, RPN net-

work output proposals and CNN network output image feature map. Proposals corre-

spond to the M N  scale, so firstly, it is mapped back to the ( / 1 6 ) ( / 1 6 )M N scale 

by using the spatial scale number of 1/16. Then the horizontal and vertical directions 

of each proposal are divided into seven equal parts, and each proposal is processed by 
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Max pooling. After processing, proposals of different sizes are all 7 7 in size, which 

achieves fixed length output. 

 The proposal feature maps were obtained using the ROI pooling, and the full con-

nection layer and softmax calculate the category of each proposal (foreign matter 

sidewall and foreign matter tread, sidewall bubble), and outputs the category probabil-

ity vector. At the same time, the positional offset was obtained using BBox, which is 

used to return a more accurate target detection frame. 

4 . Experimental Results and Analysis 

4.1  Analysis of Preprocessed Results 

Fig. 7(a) shows the original image, and Fig. 7(b) shows its corresponding histogram. 

It can be seen from the original image that the defect contains the foreign matter 

tread. Some defects are very close to the gray value of the background, and the gray 

distribution is relatively scattered. Fig. 7(c) shows the image after preprocessing, and 

Fig. 7(d) shows the histogram after preprocessing. After processing, the gray value of 

the target and background of the image has obvious difference, and the gray distribu-

tion is more concentrated. 

(a)

(c)

(b)

(d)  

Fig. 7. The preprocessed results: (a) The original image, (b) The corresponding histogram, (c) 

The preprocessed image, and (d) the histogram of the preprocessed image. 

4.2 Defect Detection Results 

Fig. 8 shows the results of image detection using an improved Faster R-CNN network 

model. 

Fig. 8(a) shows the detection results of the foreign matter sidewall, Fig. 8(b) shows 

the detection results of the foreign matter tread, and Fig. 8(c) shows the detection 

results of the sidewall bubble. It can be seen that for three kinds of defects of different 
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sizes, the test result shows that the detection quality is high. Fig. 8(d) shows the result 

of false detection. The yellow area in the picture is the real location of the bubble 

defect, and the normal area in the picture is mistake for as the bubble defect (such as 

the red box). This is mainly due to the fact that the weak edges of bubble defects in X-

ray images can hardly be clearly displayed, while the detection accuracy of bubble 

defects with strong edges like Fig. 8(c) is higher. 

(a) (d)(c) (b)  

Fig. 8. The detection results (a) The detection results of the foreign matter sidewall, (b) The 

detection results of the foreign matter tread detection, (c) The detection results of the sidewall 

bubble , and (d) The result of false detection. 

The total number of pictures to be detected is 184. Table 1 shows the number sta-

tistics of test results, include foreign matter sidewall, foreign matter tread and side-

wall bubble defects. And Table 2 shows the ratio statistics of test results. 

Table 1. The number statistics of test results 

Defects Correct Missed False 

Foreign matter sidewall 36 1 0 

Foreign matter tread 55 2 0 

Sidewall bubble 33 3 2 

Total 124 6 2 

 

Table 2. The ratio statistics of test results 

Defects Correct rate Missed rate False rate 

Foreign matter sidewall 0.973 0.027 0 

Foreign matter tread 0.965 0.035 0 

Sidewall bubble 0.917 0.083 0.056 

Total 0.954 0.046 0.015 

 

From Table 1 and Table 2, it can be seen that the method has good detection results 

for all three kinds of defects. It has a higher detection rate for other defects except for 

some bubble defects. 
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4.3 Comparison of Test Results 

In the experiment, mAP(mean average precision) [25] is used as the accuracy evalua-

tion index of tire defect detection performance. The higher the value is, the higher the 

detection accuracy of the algorithm is. 

Table 3 shows the comparison results of the different method. The detection accu-

racy of the original algorithm is 85.17%, and the speed is 17 fps. Add the prepro-

cessing method to the original algorithm, the detection accuracy is 93.82% and the 

speed is 19 fps. The method in this paper, the model detection accuracy is 95.37% and 

the speed is 28 fps. Although the accuracy of the method in this paper is slightly im-

proved from 93.82%, the detection speed is greatly improved, and the detection effect 

is better. 

Table 3. Comparison of test results of different methods 

Method mAP/% Speed/fps 

Original algorithm 85.17 17 

Original algorithm +Preprocessed 93.82 19 

Method in this paper 95.37 28 

 

The training results of in [10] algorithm and the results of direct detection after pre-

processed are compared with the accuracy of the detection results of this method. 

Table 3 and Іᴠ show the specific comparison results. 

Fig. 9 shows the detection results in [10] algorithm, Fig. 9(a) shows the detection 

results of the foreign matter sidewall, Fig. 9(b) shows the detection results of the for-

eign matter tread, and Fig. 9(c) shows the detection results of the sidewall bubble. The 

algorithm in [10] is poor for detection of foreign matter tread and sidewall bubble. 

(a) (b) (c)
 

Fig. 9. The detection results in [10] algorithm (a) The detection results of the foreign matter 

sidewall, (b) The detection results of the foreign matter tread, (c) The detection results of the 

sidewall bubble. 
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Fig. 10 shows the detection results of preprocessing tests, Fig. 10(a) shows the de-

tection results of the foreign matter sidewall, Fig. 10(b) shows the detection results of 

the foreign matter tread, and Fig. 10(c) shows the detection results of the sidewall 

bubble. The pretreatment algorithm has greatly improved the sidewall bubble. 

(a) (b) (c)
 

Fig. 10. The detection results of preprocessed tests (a) The results of the foreign matter sidewall 

detection, (b) The results of the foreign matter tread detection, and(c) The results of the side-

wall bubble detection. 

Fig. 11 shows the comparison of the detection accuracy. The histogram of the de-

tection accuracy obtained from the statistical results in Table 4 and 5. From Fig. 11, it 

can be seen that the three methods have high detection accuracy for foreign matter 

sidewall, but algorithm used in [10] is poor for detection of foreign matter tread and 

sidewall bubble. Because of the preprocessing of the training dataset and the im-

provement of the ZF network, the accuracy of detecting foreign matter tread and 

sidewall bubble has been greatly improved. 

Table 4. The number statistics of test results in [10] 

Defects Correct  Missed  False 

Foreign matter sidewall 29 5 3 

Foreign matter tread 11 3 1 

Sidewall bubble 10 16 4 

Total 50 24 8 

 

Table 5. The number statistics of preprocessed test results 

Defects Correct Missed False  

Foreign matter sidewall 62 5 1 

Foreign matter tread 50 6 3 

Sidewall bubble 32 7 2 

Total 144 18 6 
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Fig. 11. Comparison of the detection accuracy of different methods 

In Fig. 11, the blue part represents the accuracy of the original algorithm, the yel-

low part represents the accuracy of the method of add preprocessing to the original 

algorithm, and the red part represents the accuracy of the method in this paper. 

5 Conclusions 

This paper proposes a novel tire defect detection method based on Faster R-CNN, 

which is used to identify the type of tire defects and mark the location of the defects. 

In the pre-processing stage, the homomorphic filtering method is used to sharpen and 

enhance the training dataset, which avoids the generation of a large number of redun-

dant windows and improves the detection speed and accuracy. By improving the 

framework of ZF network and referring to the structure of semantic segmentation 

network FCN, combining the third-level convolution feature with the fifth-level con-

volution feature, smaller defects can be detected. The target improves the accuracy of 

location detection and recognition in Faster R-CNN network. Compared with tradi-

tional methods, the detection process has been greatly improved in the degree of au-

tomation, and has strong robustness, which is an effective and feasible method. In the 

future, this method can be applied to the intelligent manufacturing of rehabilitation 

robots to improve the core competitiveness of enterprises. 

At present, the method studied in this paper can accurately locate and identify de-

fects, but the results of the bubble location are slightly poor. In the future, we will 

combine a variety of direct and non-direct detection methods to conduct in-depth 

research on bubble defects. 
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