1,549 research outputs found

    Efficient assembly of very short oligonucleotides using T4 DNA Ligase

    Get PDF
    Abstract Background In principle, a pre-constructed library of all possible short oligonucleotides could be used to construct many distinct gene sequences. In order to assess the feasibility of such an approach, we characterized T4 DNA Ligase activity on short oligonucleotide substrates and defined conditions suitable for assembly of a plurality of oligonucleotides. Findings Ligation by T4 DNA Ligase was found to be dependent on the formation of a double stranded DNA duplex of at least five base pairs surrounding the site of ligation. However, ligations could be performed effectively with overhangs smaller than five base pairs and oligonucleotides as small as octamers, in the presence of a second, complementary oligonucleotide. We demonstrate the feasibility of simultaneous oligonucleotide phosphorylation and ligation and, as a proof of principle for DNA synthesis through the assembly of short oligonucleotides, we performed a hierarchical ligation procedure whereby octamers were combined to construct a target 128-bp segment of the beta-actin gene. Conclusions Oligonucleotides as short as 8 nucleotides can be efficiently assembled using T4 DNA Ligase. Thus, the construction of synthetic genes, without the need for custom oligonucleotide synthesis, appears feasible.</p

    Spin chirality on a two-dimensional frustrated lattice

    Full text link
    The collective behavior of interacting magnetic moments can be strongly influenced by the topology of the underlying lattice. In geometrically frustrated spin systems, interesting chiral correlations may develop that are related to the spin arrangement on triangular plaquettes. We report a study of the spin chirality on a two-dimensional geometrically frustrated lattice. Our new chemical synthesis methods allow us to produce large single crystal samples of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined thermodynamic and neutron scattering measurements reveal that the phase transition to the ordered ground-state is unusual. At low temperatures, application of a magnetic field induces a transition between states with different non-trivial spin-textures.Comment: 7 pages, 4 figure

    New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer

    Get PDF
    A summit on cellular therapy for cancer discussed and presented advances related to the use of adoptive cellular therapy for melanoma and other cancers. The summit revealed that this field is advancing rapidly. Conventional cellular therapies, such as tumor infiltrating lymphocytes (TIL), are becoming more effective and more available. Gene therapy is becoming an important tool in adoptive cell therapy. Lymphocytes are being engineered to express high affinity T cell receptors (TCRs), chimeric antibody-T cell receptors (CARs) and cytokines. T cell subsets with more naïve and stem cell-like characteristics have been shown in pre-clinical models to be more effective than unselected populations and it is now possible to reprogram T cells and to produce T cells with stem cell characteristics. In the future, combinations of adoptive transfer of T cells and specific vaccination against the cognate antigen can be envisaged to further enhance the effectiveness of these therapies

    Antipsychotic dose escalation as a trigger for Neuroleptic Malignant Syndrome (NMS): literature review and case series report

    Get PDF
    Background: “Neuroleptic malignant syndrome” (NMS) is a potentially fatal idiosyncratic reaction to any medication which affects the central dopaminergic system. Between 0.5% and 1% of patients exposed to antipsychotics develop the condition. Mortality rates may be as high as 55% and many risk factors have been reported. Although rapid escalation of antipsychotic dose is thought to be an important risk factor, to date it has not been the focus of a published case series or scientifically defined. &lt;p/&gt;Aims: To identify cases of NMS and review risk factors for its development with a particular focus on rapid dose escalation in the 30 days prior to onset. &lt;p/&gt;Methodology: A review of the literature on rapid dose escalation was undertaken and a pragmatic definition of “rapid dose escalation” was made. NMS cases were defined using DSM-IV criteria and systematically identified within a secondary care mental health service. A ratio of titration rate was calculated for each NMS patient and “rapid escalators” and “non rapid escalators” were compared. &lt;p/&gt;Results: 13 cases of NMS were identified. A progressive mean dose increase 15 days prior to the confirmed episode of NMS was observed (241.7mg/day during days 1-15 to 346.9mg/day during days 16-30) and the mean ratio of dose escalation for NMS patients was 1.4. Rapid dose escalation was seen in 5/13 cases and non rapid escalators had markedly higher daily cumulative antipsychotic dose compared to rapid escalators. &lt;p/&gt;Conclusions: Rapid dose escalation occurred in less than half of this case series (n=5, 38.5%), although there is currently no consensus on the precise definition of rapid dose escalation. Cumulative antipsychotic dose – alongside other known risk factors - may also be important in the development of NMS

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Vascular adaptation to exercise in humans: Role of hemodynamic stimuli

    Get PDF
    On the 400th anniversary of Harvey’s Lumleian lectures, this review focuses on “hemodynamic” forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity. © 2017 the American Physiological Society

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV

    Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study

    Get PDF
    Objectives: Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods: In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation), with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task) being performed before and after exercise on each occasion. Results: In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99) or omnivores (p = 0.27); nor was there any effect when data from both groups were pooled (p = 0.19). Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27). In study 2, exercise improved cognitive function across all tests (P0.05) of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise. Conclusion: 28 d of beta-alanine supplementation at 6.4g d-1 appeared not to influence brain homocarnosine/ carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
    corecore