29 research outputs found
Characterisation of the genomic landscape of CRLF2-rearranged acute lymphoblastic leukemia
Deregulated expression of the type I cytokine receptor, CRLF2, is observed in 5–15% of precursor B-cell acute lymphoblastic leukaemia (B-ALL). We aimed to determine the clinical and genetic landscape of those with IGH-CRLF2 or P2RY8-CRLF2 (CRLF2-r) using multiple genomic approaches. Clinical and demographic features of CRLF2-r patients were characteristic of B-ALL. Patients with IGH-CRLF2 were older (14 y vs. 4 y, P < .001), while the incidence of CRLF2-r among Down syndrome patients was high (50/161, 31%). CRLF2-r co-occurred with primary chromosomal rearrangements but the majority (111/161, 69%) had B-other ALL. Copy number alteration (CNA) profiles were similar to B-other ALL, although CRLF2-r patients harbored higher frequencies of IKZF1 (60/138, 43% vs. 77/1351, 24%) and BTG1 deletions (20/138, 15% vs. 3/1351, 1%). There were significant differences in CNA profiles between IGH-CRLF2 and P2RY8-CRLF2 patients: IKZF1 (25/35, 71% vs. 36/108, 33%, P < .001), BTG1 (11/35, 31% vs. 10/108, 9%, P =.004), and ADD3 deletions (9/19, 47% vs. 5/38, 13%, P =.008). A novel gene fusion, USP9X-DDX3X, was discovered in 10/54 (19%) of patients. Pathway analysis of the mutational profile revealed novel involvement for focal adhesion. Although the functional relevance of many of these abnormalities are unknown, they likely activate additional pathways, which may represent novel therapeutic targets
Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis
Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers
Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer
Author Correction: Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing (Nature Genetics, (2020), 52, 3, (331-341), 10.1038/s41588-019-0576-7)
Correction to: Nature Genetics, published online 05 February 2020. In the published version of this paper, the members of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium were listed in the Supplementary Information; however, these members should have been included in the main paper. The original Article has been corrected to include the members and affiliations of the PCAWG Consortium in the main paper; the corrections have been made to the HTML version of the Article but not the PDF version. Additional corrections to affiliations have been made to the PDF and HTML versions of the original Article for consistency of information between the PCAWG list and the main paper
Author Correction: Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer
Correction to: Nature Genetics https://doi.org/10.1038/s41588-019-0564-y, published online 05 February 2020
Mobile element insertions are frequent in oesophageal adenocarcinomas and can mislead paired-end sequencing analysis
Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer.
Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold
Patterns of somatic structural variation in human cancer genomes.
A key mutational process in cancer is structural variation, in which rearrangements delete, amplify or reorder genomic segments that range in size from kilobases to whole chromosomes1-7. Here we develop methods to group, classify and describe somatic structural variants, using data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumour types8. Sixteen signatures of structural variation emerged. Deletions have a multimodal size distribution, assort unevenly across tumour types and patients, are enriched in late-replicating regions and correlate with inversions. Tandem duplications also have a multimodal size distribution, but are enriched in early-replicating regions-as are unbalanced translocations. Replication-based mechanisms of rearrangement generate varied chromosomal structures with low-level copy-number gains and frequent inverted rearrangements. One prominent structure consists of 2-7 templates copied from distinct regions of the genome strung together within one locus. Such cycles of templated insertions correlate with tandem duplications, and-in liver cancer-frequently activate the telomerase gene TERT. A wide variety of rearrangement processes are active in cancer, which generate complex configurations of the genome upon which selection can act
