439 research outputs found

    Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales: proofs

    Full text link
    We consider a coupled system of two singularly perturbed reaction-diffusion equations, with two small parameters 0<ϵ≤μ≤10< \epsilon \le \mu \le 1, each multiplying the highest derivative in the equations. The presence of these parameters causes the solution(s) to have \emph{boundary layers} which overlap and interact, based on the relative size of ϵ\epsilon and % \mu. We construct full asymptotic expansions together with error bounds that cover the complete range 0<ϵ≤μ≤10 < \epsilon \leq \mu \leq 1. For the present case of analytic input data, we derive derivative growth estimates for the terms of the asymptotic expansion that are explicit in the perturbation parameters and the expansion order

    The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    Get PDF
    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disruption by PHMB, we observed cell entry into a range of bacterial species, and treated bacteria displayed cell division arrest and chromosome condensation, suggesting DNA binding as an alternative antimicrobial mechanism. A DNA-level mechanism was confirmed by observations that PHMB formed nanoparticles when mixed with isolated bacterial chromosomal DNA and its effects on growth were suppressed by pairwise combination with the DNA binding ligand Hoechst 33258. PHMB also entered mammalian cells, but was trapped within endosomes and excluded from nuclei. Therefore, PHMB displays differential access to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance

    A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. &lt;p&gt;&lt;/p&gt;&lt;b&gt; Methods&lt;/b&gt; We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. &lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. &lt;b&gt;Conclusion &lt;/b&gt;Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors

    Multi-timescale analysis of a metabolic network in synthetic biology: a kinetic model for 3-hydroxypropionic acid production via beta-alanine

    Get PDF
    A biosustainable production route for 3-hydroxypropionic acid (3HP), an important platform chemical, would allow 3HP to be produced without using fossil fuels. We are interested in investigating a potential biochemical route to 3HP from pyruvate through b -alanine and, in this paper, we develop and solve a mathematical model for the reaction kinetics of the metabolites involved in this pathway. We consider two limiting cases, one where the levels of pyruvate are never replenished, the other where the levels of pyruvate are continuously replenished and thus kept constant. We exploit the natural separation of both the time scales and the metabolite concentrations to make significant asymptotic progress in understanding the system without resorting to computationally expensive parameter sweeps. Using our asymptotic results, we are able to predict the most important reactions to maximize the production of 3HP in this system while reducing the maximum amount of the toxic intermediate compound malonic semialdehyde present at any one time, and thus we are able to recommend which enzymes experimentalists should focus on manipulating

    How do we get there? Effects of cognitive aging on route memory

    Get PDF
    © 2017 The Author(s) Research into the effects of cognitive aging on route navigation usually focuses on differences in learning performance. In contrast, we investigated age-related differences in route knowledge after successful route learning. One young and two groups of older adults categorized using different cut-off scores on the Montreal Cognitive Assessment (MoCA), were trained until they could correctly recall short routes. During the test phase, they were asked to recall the sequence in which landmarks were encountered (Landmark Sequence Task), the sequence of turns (Direction Sequence Task), the direction of turn at each landmark (Landmark Direction Task), and to identify the learned routes from a map perspective (Perspective Taking Task). Comparing the young participant group with the older group that scored high on the MoCA, we found effects of typical aging in learning performance and in the Direction Sequence Task. Comparing the two older groups, we found effects of early signs of atypical aging in the Landmark Direction and the Perspective Taking Tasks. We found no differences between groups in the Landmark Sequence Task. Given that participants were able to recall routes after training, these results suggest that typical and early signs of atypical aging result in differential memory deficits for aspects of route knowledge

    Surface and Temporal Biosignatures

    Full text link
    Recent discoveries of potentially habitable exoplanets have ignited the prospect of spectroscopic investigations of exoplanet surfaces and atmospheres for signs of life. This chapter provides an overview of potential surface and temporal exoplanet biosignatures, reviewing Earth analogues and proposed applications based on observations and models. The vegetation red-edge (VRE) remains the most well-studied surface biosignature. Extensions of the VRE, spectral "edges" produced in part by photosynthetic or nonphotosynthetic pigments, may likewise present potential evidence of life. Polarization signatures have the capacity to discriminate between biotic and abiotic "edge" features in the face of false positives from band-gap generating material. Temporal biosignatures -- modulations in measurable quantities such as gas abundances (e.g., CO2), surface features, or emission of light (e.g., fluorescence, bioluminescence) that can be directly linked to the actions of a biosphere -- are in general less well studied than surface or gaseous biosignatures. However, remote observations of Earth's biosphere nonetheless provide proofs of concept for these techniques and are reviewed here. Surface and temporal biosignatures provide complementary information to gaseous biosignatures, and while likely more challenging to observe, would contribute information inaccessible from study of the time-averaged atmospheric composition alone.Comment: 26 pages, 9 figures, review to appear in Handbook of Exoplanets. Fixed figure conversion error

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal

    Get PDF
    Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond–Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor α (PPAR-α) by the PPAR-α agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34+ peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara−/− mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-α agonists facilitate recovery of wild-type but not Ppara−/− mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-α alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-α co-occupies many chromatin sites with GR; when activated by PPAR-α agonists, additional PPAR-α is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-α agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-α agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.United States. Defense Advanced Research Projects Agency (Grant HR0011-14-2-0005)United States. Army Medical Research and Materiel Command (Grant W81WH-12-1-0449)National Heart, Lung, and Blood Institute (Grant 2 P01 HL032262-25

    Juvenile Facility Staff Contestations of Change

    Get PDF
    This article explores juvenile facility frontline staff members’ contestations of change to custodial practices aimed at reducing restraints, introducing trauma-informed practices, and downsizing juvenile facilities. Drawing from qualitative research about frontline staff members in a U.S. state undergoing reform, the article points to the ways that the reforms challenge staff members’ investments in behavioral control practices as a vehicle for achieving order and control in their everyday lives as workers. It also points to shifts in the broader political economy of punishment at the local, facility level, and the subsequent impact on staff member perceptions of order, control and criminality

    Towards a Processual Microbial Ontology

    Get PDF
    types: ArticleStandard microbial evolutionary ontology is organized according to a nested hierarchy of entities at various levels of biological organization. It typically detects and defines these entities in relation to the most stable aspects of evolutionary processes, by identifying lineages evolving by a process of vertical inheritance from an ancestral entity. However, recent advances in microbiology indicate that such an ontology has important limitations. The various dynamics detected within microbiological systems reveal that a focus on the most stable entities (or features of entities) over time inevitably underestimates the extent and nature of microbial diversity. These dynamics are not the outcome of the process of vertical descent alone. Other processes, often involving causal interactions between entities from distinct levels of biological organisation, or operating at different time scales, are responsible not only for the destabilisation of pre-existing entities, but also for the emergence and stabilisation of novel entities in the microbial world. In this article we consider microbial entities as more or less stabilised functional wholes, and sketch a network-based ontology that can represent a diverse set of processes including, for example, as well as phylogenetic relations, interactions that stabilise or destabilise the interacting entities, spatial relations, ecological connections, and genetic exchanges. We use this pluralistic framework for evaluating (i) the existing ontological assumptions in evolution (e.g. whether currently recognized entities are adequate for understanding the causes of change and stabilisation in the microbial world), and (ii) for identifying hidden ontological kinds, essentially invisible from within a more limited perspective. We propose to recognize additional classes of entities that provide new insights into the structure of the microbial world, namely ‘‘processually equivalent’’ entities, ‘‘processually versatile’’ entities, and ‘‘stabilized’’ entities.Economic and Social Research Council, U
    • …
    corecore