4,078 research outputs found

    Using phage Lytic Enzymes to Control Pathogenic Bacteria

    Get PDF
    Our laboratory has developed phage lytic enzymes to prevent infection by specifically destroying disease bacteria on mucous membranes and in blood. Enzymes specific for S. pneumoniae and S. pyogenes have been developed to be used nasally and orally to control these organisms in environments such as hospitals and nursing homes to prevent or markedly reduce serious infections by these pathogens. In addition, a B. anthracis-specific enzyme was developed to kill the vegetative forms of these bacteria in the blood of infected individuals. In animal studies, >80% of mice colonized mucosally or infected intravenously with pathogenic bacteria were decolonized or survived after a single enzyme treatment delivered to the same site of colonization or infection

    Revisión estratigráfica del Sinemuriense-Pliensbachiense inferior de Mallorca

    Get PDF
    Los nuevos resultados obtenidos en estudios recientes del Sinemuriense-Pliensbachiense inferior (Formación Sóller) en la isla de Mallorca, aconsejan modificar su esquema litoestratigráfico. La nueva propuesta litoestratigráfica para este intervalo elimina la Formación Sóller y eleva sus tres miembros, anteriormente definidos como miembros Es Barraca, Sa Moleta y Es Racó, a la categoría de formación. Esta redefinición se apoya en los nuevos datos estratigráficos, sedimentológicos y bioestratigráficos obtenidos a partir del estudio detallado de la Formación Es Barraca (término recuperado en este artículo), que indican que los miembros de la hasta ahora Formación Sóller no son equivalentes laterales entre sí y representan distintas etapas en la evolución de la cuenca, estando separadas por discontinuidades de carácter regional. La primera unidad (Formación Es Barraca) representa la evolución durante el Sinemuriense de una plataforma carbonatada somera, similar a las plataformas epicontinentales desarrolladas durante el Lías inferior en el ámbito del Tethys más occidental. La segunda y la tercera (Formación Sa Moleta y Formación Es Racó; Pliensbachiense inferior) son unidades disconformes con la anterior, muestran litologías y asociaciones de facies diferenciadas y presentan una distribución y espesores irregulares a favor de surcos intraplataforma. New stratigraphic and bioestratigraphic data from recent studies of the Sinemurian-lower Pliensbachian succession (Soller Formation) of the Mallorca Island demand the modification of the current lithostratigraphic scheme of the Lower Jurassic of Mallorca. The new lithostratigraphic scheme proposed in this work eliminates the Soller Formation and turns into the Formation category its three previous Es Barraca, Sa Moleta and Es Raco members. This new hierarchy for the lithostratigraphic units is based on new stratigraphic, sedimentological and biostratigraphic data obtained from the detailed study of the Es Barraca Formation (new range unit recovered in this work) which indicate that these three new proposed lithostratigraphic formations are not laterally correlatable, they represent different stages in the evolution of the sedimentary basin and are separated by regional unconformities. The first unit (Es Barraca Formation) represents the sedimentary evolution, during the Sinemurian, of a peritidal-shallow subtidal carbonate platform, similar to other epicontinental platforms developed during the Lower Jurassic around the continental margins of the western Tethys. The two others units (Sa Moleta Formation and Es Raco Formation; lower Pliensbachian) are unconformable over the former, showing different lithologies and sedimentary facies and environments, and are disposed with irregular distribution and thicknesses in relation with their deposition in intra-shelf troughs formed during initial stages of platform rifting

    Association of VAV2 and VAV3 polymorphisms with cardiovascular risk factors

    Get PDF
    Hypertension, diabetes and obesity are cardiovascular risk factors closely associated to the development of renal and cardiovascular target organ damage. VAV2 and VAV3, members of the VAV family proto-oncogenes, are guanosine nucleotide exchange factors for the Rho and Rac GTPase family, which is related with cardiovascular homeostasis. We have analyzed the relationship between the presence of VAV2 rs602990 and VAV3 rs7528153 polymorphisms with cardiovascular risk factors and target organ damage (heart, vessels and kidney) in 411 subjects. Our results show that being carrier of the T allele in VAV2 rs602990 polymorphism is associated with an increased risk of obesity, reduced levels of ankle-brachial index and diastolic blood pressure and reduced retinal artery caliber. In addition, being carrier of T allele is associated with increased risk of target organ damage in males. On the other hand, being carrier of the T allele in VAV3 rs7528153 polymorphism is associated with a decreased susceptibility of developing a pathologic state composed by the presence of hypertension, diabetes, obesity or cardiovascular damage, and with an increased risk of developing altered basal glycaemia. This is the first report showing an association between VAV2 and VAV3 polymorphisms with cardiovascular risk factors and target organ damage

    Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes

    Get PDF
    Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans

    Impact of metabolic comorbidity on the association between body mass index and heatlh-related quality of life: a Scotland-wide cross-sectional study of 5,608 participants

    Get PDF
    <p/>Background: The prevalence of obesity is rising in Scotland and globally. Overall, obesity is associated with increased morbidity, mortality and reduced health-related quality of life. Studies suggest that "healthy obesity" (obesity without metabolic comorbidity) may not be associated with morbidity or mortality. Its impact on health-related quality of life is unknown. <p/>Methods: We extracted data from the Scottish Health Survey on self-reported health-related quality of life, body mass index (BMI), demographic information and comorbidity. SF-12 responses were converted into an overall health utility score. Linear regression analyses were used to explore the association between BMI and health utility, stratified by the presence or absence of metabolic comorbidity (diabetes, hypertension, hypercholesterolemia or cardiovascular disease), and adjusted for potential confounders (age, sex and deprivation quintile). <p/>Results: Of the 5,608 individuals, 3,744 (66.8%) were either overweight or obese and 921 (16.4%) had metabolic comorbidity. There was an inverted U-shaped relationship whereby health utility was highest among overweight individuals and fell with increasing BMI. There was a significant interaction with metabolic comorbidity (p = 0.007). Individuals with metabolic comorbidty had lower utility scores and a steeper decline in utility with increasing BMI (morbidly obese, adjusted coefficient: -0.064, 95% CI -0.115, -0.012, p = 0.015 for metabolic comorbidity versus -0.042, 95% CI -0.067, -0.018, p = 0.001 for no metabolic comorbidity). <p/>Conclusions: The adverse impact of obesity on health-related quality of life is greater among individuals with metabolic comorbidity. However, increased BMI is associated with reduced health-related quality of life even in the absence of metabolic comorbidity, casting doubt on the notion of "healthy obesity"

    Activation of Serine One-Carbon Metabolism by Calcineurin A beta 1 Reduces Myocardial Hypertrophy and Improves Ventricular Function

    Get PDF
    Background In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. Objectives The authors aimed to determine the role of the calcineurin splicing variant CnAβ1 in the context of cardiac hypertrophy and its mechanism of action. Methods Transgenic mice overexpressing CnAβ1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAβ1 (CnAβ1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. Results In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAβ1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAβ1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAβ1. CnAβ1Δi12 mice show increased cardiac hypertrophy and declined contractility. Conclusions The metabolic reprogramming induced by CnAβ1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches

    The CECAM Electronic Structure Library and the modular software development paradigm

    Get PDF
    First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been quite successful for decades. The rapid progress in methodology, however, has resulted in an ever increasing complexity of those programs, which implies a growing amount of replication in coding and in the recurrent re-engineering needed to adapt to evolving hardware architecture. The Electronic Structure Library (\esl) was initiated by CECAM (European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure programs and redesign them as free, open-source libraries. They include ``heavy-duty'' ones with a high degree of parallelisation, and potential for adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by scientists when implementing new ideas. It is a community effort, undertaken by developers of various successful codes, now facing the challenges arising in the new model. This modular paradigm will improve overall coding efficiency and enable specialists (computer scientists or computational scientists) to use their skills more effectively. It will lead to a more sustainable and dynamic evolution of software as well as lower barriers to entry for new developers
    corecore