157 research outputs found

    Intraoperative hyperspectral label-free imaging: from system design to first-in-patient translation.

    Get PDF
    Despite advances in intraoperative surgical imaging, reliable discrimination of critical tissue during surgery remains challenging. As a result, decisions with potentially life-changing consequences for patients are still based on the surgeon's subjective visual assessment. Hyperspectral imaging (HSI) provides a promising solution for objective intraoperative tissue characterisation, with the advantages of being non-contact, non-ionising and non-invasive. However, while its potential to aid surgical decision-making has been investigated for a range of applications, to date no real-time intraoperative HSI (iHSI) system has been presented that follows critical design considerations to ensure a satisfactory integration into the surgical workflow. By establishing functional and technical requirements of an intraoperative system for surgery, we present an iHSI system design that allows for real-time wide-field HSI and responsive surgical guidance in a highly constrained operating theatre. Two systems exploiting state-of-the-art industrial HSI cameras, respectively using linescan and snapshot imaging technology, were designed and investigated by performing assessments against established design criteria and ex vivo tissue experiments. Finally, we report the use of our real-time iHSI system in a clinical feasibility case study as part of a spinal fusion surgery. Our results demonstrate seamless integration into existing surgical workflows

    Adjuvant chemotherapy vs radiotherapy in high-risk endometrial carcinoma: results of a randomised trial

    Get PDF
    Patients with high-risk endometrial carcinoma (stage IcG3, IIG3 with myometrial invasion >50%, and III) receive adjuvant therapy after surgery but it is not clear whether radiotherapy (RT) or chemotherapy (CT) is better. We randomly assigned 345 patients with high-risk endometrial carcinoma to adjuvant CT (cisplatin (50 mg m−2), doxorubicin (45 mg m−2), cyclophosphamide (600 mg m−2) every 28 days for five cycles, or external RT (45–50 Gy on a 5 days week−1 schedule). The primary end points were overall and progression-free survival. After a median follow-up of 95.5 months women in the CT group as compared with the RT group, had a no significant hazard ratio (HR) for death of 0.95 (95% confidence interval (CI), 0.66–1.36; P=0.77) and a nonsignificant HR for event of 0.88 (95% CI, 0.63–1.23; P=0.45). The 3, 5 and 7-year overall survivals were 78, 69 and 62% in the RT group and 76, 66 and 62% in the CT group. The 3, 5 and 7-year progression-free survivals were, respectively, 69, 63 and 56 and 68, 63 and 60%. Radiotherapy delayed local relapses and CT delayed metastases but these trends did not achieve statistical significance. Overall, both treatments were well tolerated. This trial failed to show any improvement in survival of patients treated with CT or the standard adjuvant radiation therapy. Randomised trials of pelvic RT combined with adjuvant cytotoxic therapy compared with RT alone are eagerly awaited

    Decadal changes of the Western Arabian sea ecosystem

    Get PDF
    Historical data from oceanographic expeditions and remotely sensed data on outgoing longwave radiation, temperature, wind speed and ocean color in the western Arabian Sea (1950–2010) were used to investigate decadal trends in the physical and biochemical properties of the upper 300 m. 72 % of the 29,043 vertical profiles retrieved originated from USA and UK expeditions. Increasing outgoing longwave radiation, surface air temperatures and sea surface temperature were identified on decadal timescales. These were well correlated with decreasing wind speeds associated with a reduced Siberian High atmospheric anomaly. Shoaling of the oxycline and nitracline was observed as well as acidification of the upper 300 m. These physical and chemical changes were accompanied by declining chlorophyll-a concentrations, vertical macrofaunal habitat compression, declining sardine landings and an increase of fish kill incidents along the Omani coast

    Decolonisation of MRSA, S. aureus and E. coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro

    Get PDF
    In the last twenty years new antibacterial agents approved by the U.S. FDA decreased whereas in parallel the resistance situation of multi-resistant bacteria increased. Thus, community and nosocomial acquired infections of resistant bacteria led to a decrease in the efficacy of standard therapy, prolonging treatment time and increasing healthcare costs. Therefore, the aim of this work was to demonstrate the applicability of cold atmospheric plasma for decolonisation of Gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Methicillin-sensitive Staphylococcus aureus) and Gram-negative bacteria (E. coli) using an ex vivo pig skin model. Freshly excised skin samples were taken from six month old female pigs (breed: Pietrain). After application of pure bacteria on the surface of the explants these were treated with cold atmospheric plasma for up to 15 min. Two different plasma devices were evaluated. A decolonisation efficacy of 3 log10 steps was achieved already after 6 min of plasma treatment. Longer plasma treatment times achieved a killing rate of 5 log10 steps independently from the applied bacteria strains. Histological evaluations of untreated and treated skin areas upon cold atmospheric plasma treatment within 24 h showed no morphological changes as well as no significant degree of necrosis or apoptosis determined by the TUNEL-assay indicating that the porcine skin is still vital. This study demonstrates for the first time that cold atmospheric plasma is able to very efficiently kill bacteria applied to an intact skin surface using an ex vivo porcine skin model. The results emphasize the potential of cold atmospheric plasma as a new possible treatment option for decolonisation of human skin from bacteria in patients in the future without harming the surrounding tissue

    Role of the Cellular Prion Protein in Oligodendrocyte Precursor Cell Proliferation and Differentiation in the Developing and Adult Mouse CNS

    Get PDF
    There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells

    Equatorial Atlantic Ocean dynamics in a coupled ocean–atmosphere model simulation

    Get PDF
    The ocean temperatures and zonal currents at the equatorial Atlantic simulated by an improved version of the Brazilian earth system model (BESM), with changes in the cloud cover scheme and optical properties of the atmospheric component, are analyzed and compared to those obtained from a previous version of BESM and also from other seven selected CMIP5 models. It is shown that this updated version of BESM, despite some persistent biases, more accurately represents the surface temperature variation at the Equator and the equatorial thermocline east–west slope. These improvements are associated to a more realistic seasonal cycle achieved for the Atlantic equatorial undercurrent, as well as sea surface temperatures and zonal wind stress. The better simulation of the equatorial undercurrent is, in its turn, credited to a more realistic representation of the surface wind position and strength at the tropical Atlantic by the coupled model. With many of the systematic errors noticed in the previous version of the model alleviated, this version of BESM can be considered as a useful tool for modelers involved in Atlantic variability studies

    Cholinergic receptor pathways involved in apoptosis, cell proliferation and neuronal differentiation

    Get PDF
    Acetylcholine (ACh) has been shown to modulate neuronal differentiation during early development. Both muscarinic and nicotinic acetylcholine receptors (AChRs) regulate a wide variety of physiological responses, including apoptosis, cellular proliferation and neuronal differentiation. However, the intracellular mechanisms underlying these effects of AChR signaling are not fully understood. It is known that activation of AChRs increase cellular proliferation and neurogenesis and that regulation of intracellular calcium through AChRs may underlie the many functions of ACh. Intriguingly, activation of diverse signaling molecules such as Ras-mitogen-activated protein kinase, phosphatidylinositol 3-kinase-Akt, protein kinase C and c-Src is modulated by AChRs. Here we discuss the roles of ACh in neuronal differentiation, cell proliferation and apoptosis. We also discuss the pathways involved in these processes, as well as the effects of novel endogenous AChRs agonists and strategies to enhance neuronal-differentiation of stem and neural progenitor cells. Further understanding of the intracellular mechanisms underlying AChR signaling may provide insights for novel therapeutic strategies, as abnormal AChR activity is present in many diseases

    Historical Archaeologies of the American West

    Full text link
    corecore