56 research outputs found

    Tracking mite trophic interactions by multiplex PCR

    Get PDF
    BACKGROUND A thorough knowledge of trophic webs in agroecosystems is essential to achieve successful biological pest control. Phytoseiid mites are the most efficient natural enemies of tetranychid mites, which include several important pests worldwide. Nevertheless, phytoseiids may feed on other food sources including other microarthropods, plants and even other phytoseiids (intraguild predation), which can interfere with biological control services. Molecular gut content analysis is a valuable tool for characterizing trophic interactions, mainly when working on microarthropods such as mites. We have designed new primers for Phytoseiidae, Tetranychidae and Thysanoptera identification and they have been multiplexed in a polymerase chain reaction (PCR) together with universal plant primers. Additionally, we have estimated prey DNA detectability success over time (DS50) considering the most probable events in Spanish citrus orchards: the phytoseiid Euseius stipulatus as a predator, the phytoseiid Phytoseiulus persimilis as intraguild prey, and the thrips Frankliniella occidentalis and Anaphothrips obscurus as alternative prey to Tetranychus urticae. RESULTS The designed multiplex PCR allows the identification of phytoseiids (both predator and intraguild prey) and detects alternative food sources mentioned above in the gut of the phytoseiid predator. DS50 for E. stipulatus as the predator were 1.3, 2.3 and 18.7 h post feeding for F. occidentalis, A. obscurus and P. persimilis as prey, respectively. CONCLUSION Tracking of the trophic relationships within the citrus acarofauna, and the unveiling of the role of alternative food sources will pave the way for enhancing T. urticae biological control. This multiplex PCR approach could be applicable for these purposes in similar agroecosystems

    Linkage map construction involving a reciprocal translocation

    Get PDF
    This paper is concerned with a novel statistical–genetic approach for the construction of linkage maps in populations obtained from reciprocal translocation heterozygotes of barley (Hordeum vulgare L.). Using standard linkage analysis, translocations usually lead to ‘pseudo-linkage’: the mixing up of markers from the chromosomes involved in the translocation into a single linkage group. Close to the translocation breakpoints recombination is severely suppressed and, as a consequence, ordering markers in those regions is not feasible. The novel strategy presented in this paper is based on (1) disentangling the “pseudo-linkage” using principal coordinate analysis, (2) separating individuals into translocated types and normal types and (3) separating markers into those close to and those more distant from the translocation breakpoints. The methods make use of a consensus map of the species involved. The final product consists of integrated linkage maps of the distal parts of the chromosomes involved in the translocation

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Novel Pathway of Adipogenesis through Cross-Talk between Adipose Tissue Macrophages, Adipose Stem Cells and Adipocytes: Evidence of Cell Plasticity

    Get PDF
    INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes

    Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies

    Get PDF
    The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 ± 1.1%, mean ± SEM) and hip/thigh region (1.2 ± 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering

    The macrophage at the intersection of immunity and metabolism in obesity

    Get PDF
    Obesity is a worldwide pandemic representing one of the major challenges that societies face around the globe. Identifying the mechanisms involved in its development and propagation will help the development of preventative and therapeutic strategies that may help control its rising rates

    Planck 2015 results I. Overview of products and scientific results

    Get PDF
    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds

    Adipose Tissue Immune Response: Novel Triggers and Consequences for Chronic Inflammatory Conditions

    Get PDF
    corecore