
For Peer Review
Tracking mite trophic interactions by multiplex PCR

Journal: Pest Management Science

Manuscript ID PM-19-0304.R1

Wiley - Manuscript type: Research Article

Date Submitted by the 
Author: 06-Jul-2019

Complete List of Authors: Gómez-Martínez, María; Universitat Jaume I, Departament de Ciències 
Agràries i del Medi Natural
Pina, Tatiana; Universitat Jaume I, Departament de Ciències Agràries i 
del Medi Natural; Universitat de Valencia, Didàctica de les Ciències 
Experimentals i Socials
Aguilar-Fenollosa, Ernestina; Universitat Jaume I, Departament de 
Ciències Agràries i del Medi Natural; Torres Hnos. y Sucs. S. A. U., 
Departamento de Calidad
Jacas Miret, Josep; Universitat Jaume I, Departament de Ciències 
Agràries i del Medi Natural; Institut Valencià d'Investigacions Agràries, 
Biotecnologia i Protecció Vegetal
Hurtado-Ruiz, Mónica; Universitat Jaume I, Departament de Ciències 
Agràries i del Medi Natural

Key Words: molecular diet analysis, prey detection, trophic links, Acari, 
Thysanoptera, plant

 

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science



For Peer Review

- 1 -

1 Tracking mite trophic interactions by multiplex PCR

2

3 María Antonia Gómez-Martínez,a Tatiana Pina,a,b Ernestina Aguilar-Fenollosa,a,c Josep 

4 A Jaquesa and Mónica A Hurtadoa*

5

6 María Antonia Gómez-Martínez and Tatiana Pina should be considered joint first author 

7

8 a Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I (UJI), Campus 

9 del Riu Sec, 12071 Castelló de la Plana, Spain.

10 b Departament de Didàctica de les Ciències Experimentals i Socials, Universitat de València, 

11 46022 Valencia, Spain. 

12 c Torres Hnos. y Sucs. S. A. U., Departamento de Calidad, Pol. Ind. Agrícola, nº 2, 12590 

13 Almenara (Castelló), Spain

14

15 Running title: Mite trophic interactions by multiplex PCR

16

17 María Antonia Gómez-Martínez: orcid.org/0000-0001-7197-0010; gomezma@uji.es

18 Tatiana Pina: orcid.org/0000-0002-3074-4751; tatiana.pina@uv.es

19 Josep A. Jaques: orcid.org/0000-0003-1353-1727; josep.jaques@camn.uji.es

20 Mónica A. Hurtado: orcid.org/0000-0003-2678-941X; aguilare@uji.es

21 Corresponding author: 

22 *Mónica Hurtado Ruiz,

23 Universitat Jaume I, Departament de Ciències Agràries i del Medi Natural

24 Campus del Riu Sec, 12071, Castelló de la Plana, Spain

25 Phone: +34 964 728039; Fax: +34 964 728216; E-mail: mhurtado@uji.es

26

Page 1 of 36

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://orcid.org/0000-0002-3074-4751
http://orcid.org/0000-0003-1353-1727
http://orcid.org/0000-0003-2678-941X
mailto:mhurtado@uji.es


For Peer Review

- 2 -

27 ABSTRACT

28 BACKGROUND: A thorough knowledge of trophic webs in agroecosystems is essential to achieve 

29 successful biological pest control. Phytoseiid mites are the most efficient natural enemies of 

30 tetranychid mites, which include several important pests worldwide. Nevertheless, phytoseiids may 

31 feed on other food sources including other microarthopods, plants, and even other phytoseiids 

32 (intraguild predation), which can interfere with biological control services. Molecular gut content 

33 analysis is avaluable tool for characterizing trophic interactions, mainly when working on 

34 microarthropods as mites. We have designed new primers for Phytoseiidae, Tetranychidae and 

35 Thysanoptera identification and they have been multiplexed in a PCR together with universal plant 

36 primers. Additionally, we have estimated prey DNA detectability success over time (DS50) considering 

37 the most probable events in Spanish citrus orchards: the phytoseiid Euseius stipulatus as a predator, 

38 the phytoseiid Phytoseiulus persimilis as intraguild prey, and the thrips Frankliniella occidentalis and 

39 Anaphothrips obscurus as alternative prey to Tetranychus urticae.

40 RESULTS: The multiplex PCR designed allows the identification of Phytoseiidae (both predator and 

41 intraguild prey) and detects alternative food sources mentioned above in the gut of the Phytoseiidae 

42 predator. DS50 for E. stipulatus as the predator were 1.3, 2.3 and 18.7 hours post-feeding for F. 

43 occidentalis, A. obscurus, and P. persimilis as prey, respectively. 

44 CONCLUSION: The tracking of the trophic relationships within the citrus acarofauna, and the unveiling 

45 of the role of alternative food sources will pave the way for enhancing T. urticae biological control. This 

46 multiplex PCR approach could be applicable for these purposes in similar agroecosystems.

47

48 Keywords: molecular diet analysis; prey detection; trophic links; Acari; Thysanoptera; plant

49
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66 1 INTRODUCTION

67 Successful biological control of agricultural pests requires a thorough knowledge of the trophic 

68 relationships, especially between the second and the third trophic level (i.e., phytophagous pests and 

69 their natural enemies). However, the study and understanding of these interactions can be highly 

70 challenging, especially when generalist predators that frequently exploit multiple prey species may 

71 interact either with the target pest, alternative prey or food sources.1 In this case, the only conclusive 

72 evidence of predation is direct observation of prey consumption by a predator and the identification of 

73 the prey remains within the predator’s gut or faeces. Nevertheless, confirming trophic links under 

74 unaltered field conditions is hampered, especially when working on microarthropod species with 

75 cryptic lifestyles (i.e., nocturnal, hidden or elusive predation habits).2 Moreover, in the case of 

76 microarthropods such as mites (Acari), microscopic analysis of the predator gut content should be 

77 discarded as they engage in extra-oral digestion and/or fluid feeding.3 A large amount of studies have 

78 demonstrated that molecular DNA techniques can overcome these limitations by allowing the 

79 identification of both the predator and the prey present in the gut content and, therefore, favouring the 

80 unveiling of these trophic interactions.4-8 Mitochondrial based markers (COI) are the most frequently 

81 used for this purpose, despite ribosomal ITS and 18S markers have also been proved useful.5 These 

82 techniques have taken advantage of the growing number of sequences of important agricultural 

83 species available, including tetranychids (Acari: Prostigmata)9,10 and thrips (Insecta: 

84 Thysanoptera).11,12 The implementation of a multiplex PCR, with multiple target species (either prey or 

85 predator) amplifying simultaneously, is especially useful in microarthropods as mites because the 

86 amount of DNA that can be extracted from a single individual is limited and restricts the number of 

87 rounds of amplification for prey detection.9,10,13,14

88 In Spanish clementine mandarin orchards [Citrus clementina Hort. ex. Tan. (Rutaceae)], the two-

89 spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) is a key pest.15 Many features of 

90 its biology, as rapid development, high fecundity, haplo-diploid sex determination and the plasticity of 

91 its genome, facilitate rapid evolution of pesticide resistance.16-17 Consequently, the emphasis has been 

92 placed on implementing safer and more effective control measures including conservation biological 

93 control.18 The implementation of a Festuca arundinacea Schreber (Poaceae) ground cover contributes 
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94 to better regulation of T. urticae populations in these orchards, due to the fact that this cover enhances 

95 the frequency and abundance of Phytoseiidae (Acari: Mesostigmata), the most important family of 

96 mite predators specialized in tetranychid prey.18,19 Moreover, it provides alternative food sources for 

97 phytoseiids such as pollen and thrips.20-22 Although thrips are abundant microarthropods in citrus 

98 orchards,23-25 species composition depends on the management of the cover.26 Whereas a wild cover, 

99 including plant species belonging to different families, may promote the appearance of potential citrus 

100 pest species such as Frankliniella occidentalis (Pergande) and Thrips tabaci Lindeman (Thysanoptera: 

101 Thripidae),26 a ground cover of F. arundinacea hosts large numbers of grass-specialized thrips, where 

102 Anaphothrips obscurus (Müller) (Thripidae) is regularly found along the season. The most effective 

103 phytoseiids species preying on T. urticae in this system19 are able to feed on thrips, at least under 

104 laboratory conditions.20,21,27-29 Furthermore, recent studies suggest that A. obscurus could compete 

105 with T. urticae by resource exploitation and interference, and also mediate apparent competition as 

106 both are potential prey for phytoseiids.20,21 Additionally, F. arundinacea and clementine mandarins 

107 could provide another food source for some phytoseiid mites. McMurtry et al.30 proposed the 

108 possibility of considering an additional group of phytoseiid species that can pierce plant cells. This 

109 group would include phytoseiids that may complement their nutrition requirements by feeding on leaf 

110 cells without inducing any apparent damage to the plant (i.e., they cannot be considered pestiferous) 

111 but that may affect prey beyond predation through plant-mediated effects.31 This group would mainly 

112 include species of the genera Euseius De Leon and Typhlodromus (Anthoseius and Typhlodromus) 

113 Scheuten, as Typhlodromus (T.) pyri Scheuten, Typhlodromus (A.) rhenanus (Oudemans), and E. 

114 scutalis (Athias-Henriot), among others.32-35

115 The occurrence of intraguild predation (IGP), defined as ‘‘predator-prey interactions among consumers 

116 potentially competing for limiting resources’’,36 among Phytoseiids cannot be discarded. IGP 

117 commonly occurs within many predatory guilds,37,38 including generalist and specialist phytoseiid 

118 mites.39-41 IGP is a relevant issue in applied ecology, including biological control. It may have a 

119 negative impact on pest suppression depending on both the force and frequency of its occurrence and 

120 the role of the species that interact.42-45 It is well known that the availability of alternative prey or food 

121 sources can help reduce IGP.46 In fact, Guzmán et al.47 observed that high availability of shared food 

122 sources entails a negligible IGP in phytoseiids. Among the predatory guild described in Spanish 
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123 clementine mandarin orchards,19 the highly abundant generalist pollen feeder Euseius stipulatus 

124 (Athias-Henriot), and the generalist predator from soil/litter habitats Neoseiulus barkeri Hughes,30 are 

125 seen as potential IG predators.48-50 Whether they are involved in IGP or they exploit alternative food 

126 sources, and consequently reduce IGP, deserves further studies that could be tackled with molecular 

127 tools which have not been developed for the time being. 

128 Pérez-Sayas et al.14 designed a multiplex PCR to determine and quantify the extent of the trophic 

129 relationships considering the most common Phytoseiidae as predator in Spanish citrus orchards19 and 

130 two Tetranychidae pest species (T. urticae and Panonychus citri McGregor) as prey under field 

131 conditions. However, IGP and alternative food sources including other tetranychids, thrips, or even 

132 plants, were not considered despite their potential impact on biological control. Therefore, the aim of 

133 this study has been to design a new multiplex PCR for the detection and identification of different 

134 phytoseiid predator species occurring in citrus Spanish orchards at species level (E. stipulatus, N. 

135 barkeri, Neoseiulus californicus (McGregor), Phytoseiulus persimilis Athias-Henriot and Typhlodromus 

136 phialatus Athias-Henriot) as both the predator and the IG prey, as well as the detection of other food 

137 sources, including tetranychids (family level), thrips (order level) and plants (kingdom level). This 

138 multiplex PCR should pave the way for a better understanding of the trophic webs involved in the 

139 regulation of tetranychid populations in field conditions. 

140

141 2 MATERIALS AND METHODS

142 The most relevant Tetranychidae, Phytoseiidae and Thripidae species found in Spanish citrus 

143 orchards and involved in the biological control of T. urticae19,26,51 (Table 1), were included in the study 

144 for the design of new primers (which identify target organism at different taxonomic levels) and the 

145 development of a multiplex PCR. Additional primers retrieved from other studies were also included in 

146 the multiplex PCR (Table 2). Phytoseiidae predators were considered representative of the third 

147 trophic level, IG Phytoseiidae, Tetranychidae and Thysanoptera of the second level, and both 

148 clementine mandarin and F. arundinacea of the first level (primary producers).

149 2.1 Arthropod species

150 Arthropod rearing for laboratory studies
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151 Tetranychus urticae individuals were originally collected in clementine mandarin orchards in the region 

152 of La Plana (Castelló de la Plana, Spain). They were subsequently reared on bean plants (Phaseolus 

153 vulgaris L.) (Fabaceae) at room temperature and natural photoperiod. Euseius stipulatus individuals 

154 were collected in clementine mandarin orchards located in Montcada (Valencia, Spain) and 

155 Phytoseiulus persimilis Athias-Henriot in Les Alqueries (Castelló, Spain). Euseius stipulatus was 

156 reared on upside down placed bean leaves following the procedures described by Overmeer52 and fed 

157 with a mixture of T. urticae and Carpobrotus edulis (L.) N. E. Br (Aizoaceae) pollen. Phytoseiulus 

158 persimiliswas also reared following the procedures described by Overmeer52 and fed with T. urticae on 

159 bean leaves. Both phytoseiid species were maintained in separate climatic chambers at 25 ± 1 °C, 70 

160 ± 10% RH, and a photoperiod of 16:8 h (light:dark; L:D). These conditions were also used for the 

161 laboratory assays involving live mites.

162 Anaphothrips obscurus individuals were originally collected in F. arundinacea plants grown in an 

163 experimental citrus plot at Universitat Jaume I (UJI). They were later maintained on the same kind of 

164 plants (F. arundinacea ‘Fórmula frutales y cítricos’, Semillas Fitó, S.A., Barcelona, Spain) grown in a 

165 pesticide-free greenhouse at the Institut Valencià d’Investigacions Agràries (IVIA) (Montcada, 

166 Valencia, Spain). Anaphothrips obscurus specimens were reared following the procedures described 

167 in Gómez-Martínez et al.20 Frankliniella occidentalis individuals were obtained from a colony initiated 

168 at IVIA in 2010 and originally collected at Campo de Cartagena (Murcia, Spain).53 They were later 

169 reared following the procedures described by Debreczeni et al.54 Both thrip species colonies were 

170 maintained in separate climatic chambers at 25 ± 1 °C, 70 ± 5% RH and 16:8 h (L:D) photoperiod.

171 Thysanoptera field samples

172 For primer specificity design and test (see section below), different citrus field samplings, including 

173 canopy and ground cover, were performed to collect Thysanoptera, which was considered as a 

174 potential food source of Phytoseiidae (Table 1). Non-starved Thysanoptera samples were isolated in 

175 99% ethanol and frozen for further molecular analysis. Furthermore, some specimens of Heliothrips 

176 haemorrhoidalis (Bouché) (Thysanoptera: Thripidae) and Thrips tabaci obtained from persimmon 

177 [Diospyros kaki Thunb. (Ebenaceae)] and leek [Allium ampeloprasum var. porrum (L.) J. Gay 

178 (Amaryllidaceae)], respectively, were also collected and used for primer specificity tests (Table 1).

179 2.2 DNA extraction
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180 DNA of Phytoseiidae, Tetranychidae, Thysanoptera and other potential food sources for Phytoseiidae 

181 mites in citrus orchards and those provided in the laboratory rearings was extracted following different 

182 protocols depending on the organism and the objective of the study. 

183 Acari and Hemiptera from the UJI-IVIA DNA collection and new Acari DNA used for feeding trials 

184 (Table 1 and 3), were previously extracted following the modified “salting out” protocol.55 The DNA of 

185 Thysanoptera specimens reared in the laboratory was also extracted using this protocol. However, 

186 those thrip specimens obtained from field samples and isolated in 99% ethanol were handled 

187 according to Rugman-Jones et al.12 In this case, DNA was extracted following the modified “salting 

188 out” protocol, where the grinding of the specimen was substituted by piercing one side of the abdomen 

189 using a sterilized minute pin, in 100 μl of TNES. This method allows the recovery of the remains of the 

190 individual from the original microfuge tube for species-specific identification. Adult thrips were slide 

191 mounted on Hoyer’s medium for microscope observation and identified using morphological 

192 characters.56-58 Festuca arundinacea leaf DNA was also extracted following the modified “salting out” 

193 protocol. Clementine mandarin (C. clementina Hort. ex. Tan. cvar. Clemenules) leaf DNA and C. 

194 edulis anther DNA were extracted using the REDExtract-N-AmpTM Plant PCR Kit (Sigma), following 

195 the manufacturer protocol. Finally, fungal DNA used for cross-reactivity test (see the section below) 

196 came from the UJI-IVIA DNA collection and it was extracted following the protocol described by 

197 Sánchez-Torres et al.59

198 2.3 Multiplex PCR design

199 Alignment and primer design

200 Multiplex PCR was designed considering Phytoseiidae mites (E. stipulatus, N. barkeri, N. californicus, 

201 P. persimilis, and T. phialatus) as predator and IG prey, and tetranychid mites, thrips, and plant as 

202 food sources. Therefore, different genes and DNA regions were selected for primer design according 

203 to the target organism. 

204 For primer design, sequence alignment was performed with the MEGA 5.60 For identifying every single 

205 Phytoseiidae species, different reverse primers were designed in non-conserved regions of the 

206 Internal Transcribed Spacer 1 (ITS1) (nuclear ribosomal DNA) (Table 2). For detecting Tetranychidae 

207 species, a reverse primer was designed in the conserved regions of ITS1 (Table 2). The majority of 

208 ITS1 sequences were obtained in previous work.14 The 18S primer61 was used as forward for both 
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209 Phytoseiidae and Tetranychidae species detection. To detect species belonging to Thysanoptera, a 

210 forward primer was designed after the alignment of COI sequences of the target species in the 

211 conserved regions (Table 2). All COI sequences used were retrieved from the GenBank 

212 (http://www.ncbi.nlm.nih.gov/genbank). The barcoding primer HCO219862 was used as a 

213 Thysanoptera reverse primer. For plant detection, the chloroplast region of the trnL gene was selected 

214 and, in this case, the universal primers designed by Taberlet et al.63,64 were used (Table 2). 

215 Primer specificity test 

216 Target species (Table 1), either reared under laboratory conditions, field-collected or coming from the 

217 UJI-IVIA DNA collection, were included in our study for primer specificity test and subsequent 

218 multiplex PCR design. 

219 All combinations of primers pairs (Table 2) were tested in at least three individuals of each target 

220 species. A single DNA template (5-10 ng/μL) of the target species was used as a positive control. 

221 Amplification reactions were performed in a final volume of 25 μL: 1× Taq polymerase buffer (Roche 

222 Applied Science, Mannheim, Germany), 200 µM of each dNTP (5 PRIME GmbH, D·22767 Hamburg), 

223 2.5 mM of MgCl2, 0.4 μM of each primer, 1 unit of DNA Taq polymerase (Roche), and 1 μL of DNA 

224 template. Amplifications were performed in a Bio-Rad C1000™ Thermal Cycler. PCR parameters 

225 were as follows: denaturation for 4 min at 94 °C; 27 cycles of 30 s at 92 °C, 30 s at 50 °C, and 30 s at 

226 72 °C; and a 10min final extension at 72 °C. PCR products were run on 1.5% agarose D-A low EEO 

227 (Pronadisa, Sumilab S.L., Madrid, Spain) and visualized under UV light.

228 Multiplex PCR design

229 Once the specificity of the primers had been tested by singleplex, the multiplex PCR conditions with all 

230 primers were adjusted and optimized on agarose following the steps defined in Henegariu et al.65 

231 Reactions were performed in a final volume of 25 μL: 1.4× Taq polymerase buffer, 200 µM of each 

232 dNTP, 2.5 mM of MgCl2, 1.2 μM of the E. stipulatus reverse primer, forward and reverse thrips primers 

233 and 18S forward primer, 0.8 μM of Tetranychidae and N. barkeri reverse primers, 0.4 μM of each P. 

234 persimilis and T. phialatus reverse primers, 0.2 μM of forward and reverse chloroplast trnL primers 

235 and 0.1 μM of N. californicus reverse primer, 1 unit of DNA Taq polymerase, and 1 μL of DNA 

236 template. Assessment of amplification conditions and PCR products was performed as described for 

237 the primer specificity test. 
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238 Afterwards, multiplex PCR conditions were modified and adapted to analysis with labeled primers in 

239 the ABI/PE 3730 DNA Sequencer (Applied Biosystems, Foster City, USA) at the Servei Central de 

240 Suport a la Investigació Experimental (SCSIE) (Universitat de València, Spain). An equimolar mix (5 

241 ng/µL) of the most representative DNA target species was used as a positive control (i.e., all 

242 Phytoseiidae species, T. urticae for Tetranychidae, A. obscurus and F. occidentalis for Thysanoptera 

243 and C. clementina and F. arundinacea for plants). Final multiplex PCR conditions are described in the 

244 results section. Fragment length reads were carried out with Peak Scanner™ Software v.1.0 (Applied 

245 Biosystems 2006). All samples that produced peaks of the expected size were considered positive. 

246 The sensitivity of prey DNA detection was determined by assaying multiplex PCR, at nine-fold 

247 dilutions starting from 10 ng of total independently P. persimilis, A. obscurus, F. occidentalis, and T. 

248 urticae DNA.

249 Alternative food sources and cross-reactivity test

250 Species specificity of the multiplex PCR assay was tested on non-target food sources present in citrus 

251 orchards and not so frequently incorporated in phytoseiid diets30 (Table 3). The aim of this test was to 

252 avoid false positives when predators had fed on alternative food sources not included in the multiplex 

253 PCR. We used the same positive control as in the cross-reactivity test for species-specific primers. In 

254 order to discriminate between unsuccessful amplification (i.e., absence of target DNA) and lack of 

255 DNA in the PCR (i.e., absence of both target and non-target DNA), we used the universal primer pair 

256 Univ18SrDNA and PCR conditions described in Monzó et al.66

257 2.4 Gut content detection 

258 In order to test if multiplex PCR was able to detect possible food sources in the gut content of the 

259 target species, we performed different experiments. 

260 For tetranychid detection, we tested, from our DNA collection, one individual of E. stipulatus and P. 

261 persimilis per each starvation time (from 0 to 28h; n = 10 and n = 11, respectively) from the feeding 

262 event that had resulted positive for these prey in a previous study.14

263 For plant detection, we extracted DNA from E. stipulatus and A. obscurus individuals directly taken 

264 (non-starved) from the rearings. Furthermore, we also included thrips and tetranychid specimens 

265 directly taken (non-starved) from field samplings. Additionally, to ascertain if E. stipulatus was able to 

266 pierce surfaces and take up liquids, we performed a feeding trial using a slightly modified membrane 
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267 feeding system described in Ingwell et al.67 The membrane feeding chamber was prepared using a 

268 modified Huffaker cell.52 This unit consisted of a PVC plate (80 x 40 x 10 mm) with a central circular 

269 hole (diameter 2 cm). The bottom surface of the hole was closed by a microscope slide held in place 

270 with two rubber bands. One E. stipulatus female randomly chosen from the colony was placed into the 

271 chamber. Immediately after, the upper opening was covered by a Parafilm® (ParaFILM®; Bemis 

272 Company, Inc. Neenah, Wisconsin) stretched tightly across the hole and a drop of 5% sucrose diet 

273 dyed with blue food coloring was pipetted onto the membrane. Finally, a second layer of Parafilm® was 

274 stretched tightly to sandwich the diet in order to obtain a uniform distribution along the surface of the 

275 membrane. The Huffaker cells were maintained in a climatic chamber at 25 ± 1 °C, 70 ± 10% RH and 

276 16:8 h (L:D) photoperiod during the whole experiment. A color change of phytoseiid gut from yellow or 

277 white into blue would imply the phytoseiid piercing the membrane and taking up liquids.

278 2.5 Feeding trials

279 We conducted specific feeding trials for thrips and IG prey detection. In this case, we chose the most 

280 probable events in the field i.e., E. stipulatus as a predator and P. persimilis as IG prey,14 and F. 

281 occidentalis and A. obscurus -two abundant thrips in clementine mandarin orchards- as alternative 

282 prey to estimate prey DNA detectability success over time (DS50). Experimental units (cells) used for 

283 the predation assays consisted of a PVC plate (80 × 35 × 3 mm) containing 2 chambers with a 

284 diameter of 15 mm. The bottom of these chambers was covered by a fine mesh glued to the plate and 

285 closed on the upper side by a microscope slide hold in place by two rubber bands.68 Three to five 

286 days-old adult females of E. stipulatus were individually placed in the cells and starved for 48 h in a 

287 climatic chamber at 25 ± 1 °C, 70 ± 10% RH, and a photoperiod of 16:8 h (L:D). After starvation, each 

288 adult female was transferred to a new cell containing one prey. This prey was a first instar nymph for 

289 A. obscurus and F. occidentalis, and a protonymph in the case of P. persimilis. Phytoseiid activity was 

290 continuously monitored under a binocular microscope. Time after feeding was set to 0 when the 

291 phytoseiid released the dead prey. Then, E. stipulatus specimens were maintained individually in new 

292 cells for different time periods (0 to 20 h; Table 4) after feeding at the same abovementioned 

293 conditions. Next, they were transferred to 1.5 mL tubes, frozen at -80 °C, and processed for molecular 

294 assessment. Additionally, 48 h starved phytoseiids were used as negative controls. The number of 

Page 11 of 36

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

- 12 -

295 individuals tested for each species and time elapsed since feeding is referred between brackets in 

296 Table 4. 

297 DNA from all phytoseiids was extracted and screened with the multiplex PCR described in the results 

298 section. 

299 Probit analysis was used to determine the prey DNA detectability success (DS50) defined as “the time 

300 after which half of the predators of a cohort that fed at the same time test positive for the presence of a 

301 species of prey, considering that the rate of prey decay is usually exponential”.69,70 Chi-square (χ2) 

302 tests were used to determine the fit of the probit model. To assess whether there were significant 

303 differences between lines, when applicable, we performed a χ2 test of parallelism and a comparison of 

304 relative median potency. Analyses were performed using SPSS v. 21 (IBM Corp. Released 2012).

305

306 3 RESULTS

307 3.1 Multiplex PCR design

308 The chosen primers and designed amplified specific bands within the expected rank length with the 

309 DNA of the target organism (Table 2). Primers used for Tetranychidae (family level), plant (kingdom 

310 level) and Thysanoptera (order level) detection were successful in most species tested (Table 1). 

311 Tetranychidae primers gave positive detection with a different fragment length amplification in P. citri 

312 and T. urticae (367 bp), Tetranychus evansi Baker and Pritchard (350 bp) and T. turkestani Ugarov 

313 and Nikoskii (371 bp) (Table 1 and 2) allowing tetranychid identification. Thysanoptera primers 

314 amplified in 13 out of 18 species tested and those for plant detection amplified in the species tested 

315 (Table 1). 

316 The final multiplex PCR reaction was adjusted to a final volume of 25 μL: 1.4× Taq polymerase buffer, 

317 200 µM of each dNTP, 2.5 mM of MgCl2, 1 unit of DNA Taq polymerase, and 1 μL of DNA template. 

318 Primer concentration in the multiplex PCR is shown in Table 2. The multiplex PCR design was 

319 performed at the same amplification conditions as described for the primer specificity test. All the 

320 primers were successfully multiplexed in a single PCR discarding primers interference and allowing 

321 the identification of the target taxon (either species, order or higher taxonomic categories) using the 

322 previously described automated sequencer (Table 1). Positive control with single target DNA and 
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323 equimolar mixes of DNA templates from the Phytoseiidae species and five representative species of 

324 Tetranychidae, Thysanoptera, and plant amplified the expected fragment lengths (Fig. 1). Multiplex 

325 PCR sensitivity with fluorescent markers was independently estimated at 0.1 pg of total DNA for C. 

326 clementina, 1 pg for P. persimilis and T. urticae, 10 pg for A. obscurus and 1000 pg for F. occidentalis. 

327 Multiplex PCR exhibited no cross-amplification of the alternative food sources tested except for 

328 Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae), Aspidiotus neri Bouché (Hemiptera: 

329 Diaspididae), Aphis spiraecola Patch (Hemiptera: Aphididae) and Toxoptera aurantii (Boyer de 

330 Fonscolombe) (Hemiptera: Aphididae) where a multi-peak pattern was observed and for the fungus 

331 Cladosporium sp. (Davidiellaceae), where a 290 bp peak, not coincident with any of our target 

332 organisms, was detected (Tabla 3). 

333 3.2 Gut content detection

334 The designed multiplex PCR allowed the detection of degraded DNA from all food sources considered 

335 in the phytoseiid gut content after a digestive process.

336 Plant DNA was detected within Thysanoptera, Tetranychidae, and Phytoseiidae. In Thysanoptera, 

337 plant DNA was detected in all specimens of A. obscurus tested (n = 3). Furthermore, plant DNA 

338 detection within field collected thrips specimens was positive for Chirothrips manicatus Haliday and 

339 Aptinothrips rufus (Haliday) (Thysanoptera: Thripidae) when feeding on F. arundinacea, for Thrips 

340 angusticeps Uzel (Thysanoptera: Thripidae) feeding on Taraxacum sp. (Asteraceae), for T. tabaci 

341 directly taken from leeks and for H. haemorrhoidalis when feeding on persimmon. In Tetranychidae, 

342 plant DNA was detected in Aplonobia histricina (Berlese) (Acari: Tetranychidae) feeding on Oxalis 

343 pes-caprae L. (Oxalidaceae) and in T. urticae on bean. Finally, in Phytoseiidae we detected plant in 

344 Typhlodromus (Anthoseius) rhenanoides (Athias-Henriot) (Acari: Phytoseiidae) field collected from 

345 lemon trees and later reared on bean plants but not within E. stipulatus directly taken from the 

346 rearings. Nevertheless, this phytoseiid was able to take up liquid by piercing the membrane feeding 

347 system (n = 3; blue colored digestive caeca) so we do not discard the possibility of plant feeding in this 

348 species (Fig. 2). 

349 This multiplex PCR tested on DNA collection of E. stipulatus and P. persimilis that had resulted 

350 positive for tetranychid DNA in a previous study14 allowed the detection of tetranychid DNA in the gut 

351 of both Phytoseiidae up to 28 hours after the feeding event.
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352 3.3 Feeding trials

353 Positive prey DNA detection within E. stipulatus at time = 0 h (immediately after prey release) was 

354 92.31%, 81.82% and 63.64% for P. persimilis, A. obscurus, and F. occidentalis, respectively (Table 4). 

355 Detectability of prey DNA for these prey species fitted the assumptions of the probit model for E. 

356 stipulatus (Fig. 3 and Table 5). DS50 values depended on the prey species considered. DS50 was 18.7 

357 h for P. persimilis, 2.3 h for A. obscurus, and 1.3 h for F. occidentalis. Probit lines corresponding to 

358 these three prey species could not be successfully forced to parallelism (χ2 = 12.853; d.f. = 2; P = 

359 0.002), which was significant between A. obscurus and F. occidentalis probit lines only (χ2 = 0.002; d.f. 

360 = 1; P = 0.967). Relative median potencies suggested that detection of A. obscurus in E. stipulatus 

361 was 1.93 times longer than that of F. occidentalis in the same predator species (P < 0.05).

362

363 4 DISCUSSION

364 The multiplex PCR designed in this study allows the simultaneous identification of the phytoseiid 

365 predator at species level and its gut content at different taxonomic categories including the three-

366 trophic levels. Therefore, the role of arthropod species commonly found in citrus orchards and its 

367 potential food sources [plants, Tetranychidae, Thysanoptera, Phytoseiidae, and other predators (IGP 

368 events)] can be assessed. With this tool, the spectra of tetranychid species that can be detected with 

369 the multiplex PCR designed by Pérez Sayas et al.14 has been enhanced by including T. turkestani and 

370 T. evansi, two species commonly found in the ground cover in this agrosystem as well as in other 

371 important agroecosystems.71,72 Indeed, T. evansi is considered an invasive pest of solanaceous crops 

372 that can appear in citrus orchards associated with a wild cover,73-74 where it can outcompete T. urticae 

373 and T. turkestani.75 Tetranychidae primers were designed in the ITS1 region, which is characterized 

374 by a higher level of variability than the ITS2.76,77 This nucleotide variability (insertions/deletions) 

375 explains the differences in length of the amplified fragments that allowed not only to detect but also to 

376 differentiate Tetranychidae prey species. Panonychus citri and T. urticae were the only exceptions, as 

377 they displayed a band of the same fragment length. If needed, these two species could be 

378 differentiated using the primers designed by Pérez-Sayas et al.14
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379 The COI region was chosen to design primers for detecting all the Thysanoptera species present in 

380 our target agrosystem (Table 2), which could be a potential food source for citrus-dwelling phytoseiids. 

381 Nevertheless, the designed primers failed to amplify some of these species (Table 1). In this case, 

382 thrips were detectable as a single band, contrarily to what happened with the tetranychids. The 

383 multiplex PCR designed amplifies in the most abundant thrips species present in the F. arundinacea 

384 ground cover, including A. obscurus and C. manicatus, as well as the main thrips species causing fruit 

385 damage in citrus in the Mediterranean basin as H. haemorrhoidalis25 and Pezothrips kellyanus 

386 (Bagnall) (Table 1).24,78,79 Apart from these species, the multiplex PCR can amplify DNA of thrips 

387 species considered economically important agricultural pests worldwide, as F. occidentalis and T. 

388 tabaci (Table 1),80-83 which could be occasional pests in citrus.79

389 The plant primers chosen for the multiplex PCR design are located in the highly conserved chloroplast 

390 trnL gene63,64,84 considered indeed as a highly conserved DNA sequence region among land plants, 

391 from Angiosperms to Bryophytes, just like the reverse primer in Angiosperms and Gymnosperms.63,64 

392 Furthermore, the robustness of this amplification system, partly due to this region including a 

393 conserved loop, allows the amplification of highly degraded DNA.64 This fact explains why we detected 

394 a wide range of plant DNA belonging to taxonomically distant families (Table 1 and 3) in the gut 

395 content of phytophagous thrips and mite specimens obtained from field samples and, additionally, 

396 within the generalist phytoseiid T. (A.) rhenanoides. In this phytoseiid species, we unexpectedly 

397 detected plant DNA when using the multiplex PCR for the cross-reactivity test. However, we did not 

398 detect plant DNA in E. stipulatus obtained from a laboratory colony kept on bean leaves, as it could be 

399 expected as suggested for Euseius spp. and proven for E. scutalis.85 Euseius stipulatus is considered 

400 as a pollen feeding generalist predator and whether it can feed on the plant cell sap remains unclear.31 

401 As suggested by McMurtry et al.30 the leaf cell piercing may be probably related to water uptake and, 

402 therefore, the uptake of nutrients could be a consequence of their presence in the imbibed liquid, 

403 extremely reducing the amount of plant DNA available for plant detection in the gut content. 

404 Furthermore, when pollen and water are abundant, as in laboratory stock colonies, the need for 

405 piercing plant cells by phytoseiids may be less frequent or even disappear. However, when we forced 

406 E. stipulatus to starve, we demonstrated that this species is able to obtain liquid by piercing a double 

407 parafilm membrane containing 5% sucrose (Fig. 2). Further studies should be performed considering 
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408 other methodologies to test whether E. stipulatus ingest cellular content allowing plant DNA detection. 

409 Whatever the case, the designed multiplex PCR may broaden the tools available to explore the ability 

410 of phytoseiid mites to feed on plants (allowing the detection of a wide range of plant species) and to 

411 study plant-feeding habits of other zoophytophagous arthropod species.

412 To obtain valid quantitative data to ascertain the relevance of each trophic link, it is necessary to 

413 complement assays of field-captured predators with laboratory studies that determine the detectability 

414 periods for prey DNA for each combination of predator and prey.6 As a first step to determine the 

415 impact of each trophic link, we studied the detectability periods of the most probable field events 

416 considering E. stipulatus as a predator and three different prey: P. persimilis (IGP14), A. obscurus and 

417 F. occidentalis. Our results confirmed the previous observations14,69,86,87 by which DNA-detection rates 

418 were affected by the identity of the prey. In our case, DS50 ranged from 1.3 to 18.7 hours post-feeding 

419 (Fig. 3 and Table 5), which corresponded to F. occidentalis and P. persimilis when preyed upon by E. 

420 stipulatus, respectively. This fact may be associated with the accessibility of the target DNA, the 

421 efficiency of the primer to target the prey DNA and the digestion factor that determines different 

422 detection efficiencies.88 Some authors argued that a shorter fragment length results in longer prey 

423 DNA detectability.7,87,89,90 The results obtained in the present study agree with this hypothesis as 

424 shorter DS50 corresponded to species producing longer amplification fragments (Tables 2 and 5). 

425 Gómez-Polo et al.91 obtained an 8.6 h half-life detection of F. occidentalis in Orius majusculus (Reuter) 

426 (Hemiptera: Anthocoridae) with an amplification band length (292 bp) similar to ours. Differences in 

427 the feeding trial related to the meal size (both prey number and size) offered, may explain these 

428 contrasting results. On the one hand, Gómez-Polo et al.91 offered second instar nymphs (N2) of F. 

429 occidentalisas prey instead of the two-fold smaller first instar nymphs that we used. On the other hand, 

430 Gómez-Polo et al.91 only analyzed those specimens that had been feeding on 2 to 4 N2 F. 

431 occidentalis, whereas we only offered one N1 specimen. In fact, some authors have pointed out the 

432 influence of meal size in prey DNA detection within predators.7,69,86,88 Furthermore, other non-

433 excluding factors such as the predator size (O. majusculus is 6 times larger than E. stipulatus), the 

434 feeding habits (generalist predator vs omnivore) and the specific digestive processes resulting from 

435 the distance between their respective taxonomical groups (Insecta vs Arachnida), could also explain 

436 these differences. In the case of P. persimilis as prey of E. stipulatus, we obtained the longest DS50 
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437 (18.7 h), similar to the one observed when feeding on T. urticae (18.3 h).14 These results could be 

438 associated with the non-preference of E. stipulatus for these types of prey. Indeed, DS50 for the 

439 preferred prey (A. obscurus)21 is one order of magnitude shorter (2.3 h). 

440 The occurrence of IGP is controversial. While some authors consider IGP a widespread interaction, 

441 reaching frequencies between 58.4 and 86.7%37 occurring in a great diversity of animal taxa,45,69 

442 others consider that it may be not that common among phytoseiids.60 The study of IGP occurring 

443 among predatory mites in the field is still in its infancy due to the scarcity of suitable methodologies 

444 allowing the appraisal of this phenomenon without altering predator behavior. Just a few studies have 

445 quantified IGP rates in the field,42,69 although lately, they are receiving more attention92-94 .The 

446 multiplex PCR designed in the present work is suitable for the study of IGP among phytoseiids. The 

447 detection of this trophic relation in clementine mandarin orchards, e.g., predation of E. stipulatus on P. 

448 persimilis nymphs, was highly efficient along time after the feeding event happened (detection 

449 efficiency of 42.83% 20 hours after feeding). Therefore, the present multiplex PCR could be used in 

450 similar systems where phytoseiid species could become prey in order to detect disruption of biological 

451 control. For example, Janssenet al.95 observed that F. occidentalis preyed on eggs of T. urticae, P. 

452 persimilis and Iphiseius degenerans (Berlese) (Acari: Phytoseiidae) when host plants were of low 

453 quality.To sum up, this newly developed multiplex PCR could contribute to shed light on the so far 

454 cryptic trophic relationships occurring among mites. Importantly, it could allow to better answer the 

455 question debated by Fonseca et al.96 regarding how to evaluate the potential occurrence of IGP and, 

456 therefore, establish how widespread this phenomenon is actually occurring in nature among 

457 phytoseiids.47

458 A better knowledge of the trophic relationships established within the citrus acarofauna, including T. 

459 urticae, a key pest of Spanish citrus, and of the role of alternative food sources to conserve and 

460 enhance predator populations, will pave the way to enhance the biological control of this worldwide 

461 pest. Now, a suitable molecular tool developed with this aim is ready to be used.

462
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737
738 Table 1 Target species tested in this work with the singleplex and multiplex PCR and DNA detection success with the new multiplex PCR. 
739

Kingdom Phylum Class Order Family Species Origin DNA detection

Animalia Arthropoda Arachnida Acari Phytoseiidae Euseius stipulatus (Athias-Henriot) Montcada, Spain + †

Neoseiulus barkeri Hughes Castelló de la 
Plana, Spain

+

Neoseiulus californicus (McGregor) Koppert Biol. 
Syst.

+

Phytoseiulus persimilis Athias-Henriot Les Alqueríes, 
Spain

+

Typhlodromus phialatus Athias-Henriot Montcada +
Tetranychidae Aplonobia histricina (Berlese) Montcada - ‡

Eutetranychus banksi (McGregor) Huelva, Spain -
Eutetranychus orientalis (Klein) Málaga, Spain -
Panonychus citri (McGregor) Montcada +
Tetranychus evansi Baker and Pritchard Valencia, Spain +
Tetranychus turkestani Ugarov and 
Nikolskii

Castelló de la 
Plana

+

Tetranychus urticae Koch Betxí, Spain +
Insecta Thysanoptera Aeolothripidae Aeolothrips sp. Montcada +

(S.O. Terebrantia) Rhipidothrips brunneus Williams Montcada +
Melanthripidae
(S.O. Terebrantia) Melanothrips fuscus Sulzer Montcada +

Thripidae
(S.O. Terebrantia) Anaphothrips obscurus (Muller) Castelló de la 

Plana
+

Anaphothrips sudanensis Trybom Montcada -
Aptinothrips rufus (Haliday) Montcada +
Chirothrips manicatus Haliday Montcada +
Frankliniella occidentalis (Pergande) Montcada +
Frankliniella tenuicornis (Uzel) Montcada -
Heliothrips haemorrhoidalis (Bouché) Castelló de la +
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Plana
Limothrips cerealium Haliday Montcada +
Pezothrips kellyanus (Bagnall) Montcada +
Stenothrips graminum Uzel Montcada -
Tenothrips frici (Uzel) Montcada -
Thrips angusticeps Uzel Montcada +

Thrips tabaci Lindeman Viena (Boku lab. 
strain)

+

Thrips vulgatissimus Haliday Montcada +
Phlaeothripidae
(S.O. Tubulifera)

Haplothrips tritici Kurdjumov Montcada -

Plantae Streptophyta Eudicotyledoneae Caryophyllales Aizoaceae Carpobrotus edulis (L.) N. E. Br Montcada +

Liliopsida Poales Poaceae Festuca arundinacea Schreb. Castelló de la 
Plana

+

Magnoliopsida Fabales Fabaceae Phaseolus vulgaris L. Montcada +
Sapindales Rutaceae Citrus clementina Hort. ex. Tan. Montcada +

740 †+: Positive DNA detection
741 ‡ -: Negative DNA detection 
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743 Table 2 Primer sequences, concentration in final multiplex PCR and amplified fragment length of the target organisms.
744

Target group Target 
region Primer name Primer sequence (5’ -> 3’) †

Primer 
references

Primer 
concentration 
(μM) 

Length 
(bp)

Phytoseiidae; Tetranychidae ITS1 18S AGA GGA AGT AAA AGT CGT AAC AAG ‡ F Navajas et 
al., 1999

1.2

18S FAM-6 Navajas et 
al., 1999

1.2

Phytoseiidae ITS1
Euseius stipulatus Esdep2 CGC GTC TGT GGA CGG TAA CG R This work 1.2 247; 257
Neoseiulus barkeri Abpr CAT TCT TCC ATG TGAT GGA GTG R This work 0.8 93
Neoseiulus californicus Ncpr2 ACG TAC GAC GGC CAG CAG GC R This work 0.05 155
Phytoseiulus persimilis Pppr2 CTG GTT GGT ACC GAC TCG CG R This work 0.3 277
Typhlodromus phialatus Tppr2 CGA GCA GTA GGA CTG ACC TC R This work 0.2 234

Tetranychidae ITS1 TeUniITS1 CCA AGT ATG TAG CAA GAC AGG C R This work 0.8 350-371‡

Thysanoptera COI TripUniCOI TCA  ACA TTT TTT CAT TCT GG F This work 1.2
TripUniCOI FAM-6 F This work 1.2

HCO2198 TAA ACT TCA GGG TGA CCA  AAA  AAT CA § R
Folmer et 
al., 1994 1.2 330

Plants trnL trnL_a CGA AAT CGG TAG ACG CTA CG F Taberlet et 
al., 1991

0.1

trnL_a FAM-6 F Taberlet et 
al., 1991

0.1

trnL_h CCA TTG AGT CTC TGC ACC TAT C # R Taberlet et 
al., 2007

0.1 190

745 † F: forward primer; R: reverse primer. 
746 ‡Amplified fragment length for Tetranychidae species are: T. evansi (350 bp), P. citri and T. urticae (367 bp) and T. turkestani (371 bp).
747
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748 Table 3 Non-target organisms and species DNA detection screened with the multiplex PCR for cross-reactivity test. 
749

Kingdom Phylum Class Order Family Species Origin DNA 
detection

Acarididae - Montcada -†

Phytoseiidae Amblyseius andersoni (Chant) Syngenta -
Amblyseius cucumeris (Oudemans) Syngenta -
Amblyseius swirskii (Athias-Henriot) Syngenta -
Typhlodromus (Anthoseius) rhenanoides 
Athias-Henriot Montcada -

Arachnida Acari

Tydeidae - Montcada -
Aleyrodidae Aleurothrixus floccosus  (Maskell) Les Alqueries, -

Aphis (Aphis) gossypii Glover Montcada -
Aphis (Aphis) spiraecola Patch Montcada MPP‡Aphididae
Toxoptera aurantii (Boyer de Fonscolombe) Montcada MPP
Aonidiella aurantii (Maskell) Carcaixent, Spain MPP
Aspidiotus nerii Bouché Montcada MPPDiaspididae
Parlatoria pergandii Comstock Montcada -

Coccidae Saissetia oleae (Olivier) Bétera, Spain -
Margarodidae Icerya purchasi Maskell Montcada -

Animalia Arthropoda

Insecta Hemiptera

Pseudococcidae Planococcus citri (Risso) Bétera -
Plantae Streptophyta Liliopsida Asparagales Amaryllidaceae Allium ampeloprasum var. porrum (L.) J. Gay Montcada +§

Magnoliopsida Ericales Ebenaceae Diospyros kaki Thunb. L’Alcúdia, Spain +
Magnoliopsida Asterales Asteraceae Taraxacum sp. Montcada +

Fungi Ascomycota Dothideomycetes Capnodiales Davidiellaceae Cladosporium sp. Montcada NCP¶

Pleosporales Pleosporaceae Alternaria sp. Montcada -

Sordariomycetes Hypocreales Nectriaceae Fusarium sp. Montcada -
750 † -: Negative DNA detection
751 ‡MPP: Multi-peak pattern
752 §+: Positive DNA detection
753 ¶ NCP: Not coincident peak
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- 32 -

754 Table 4 Number of positive detections for each predator and prey combination at different time 
755 intervals since feeding.
756

Time since feeding (h)

Predator Prey 0 2 4 6 16 20

Euseius stipulatus Anaphothrips obscurus 9(11)† 5(11) 4(11) 1(12) 0(12) -

Frankliniella occidentalis 7(11) 5(11) 2(11) 0(12) - -

Phytoseiulus persimilis 12(13) 12(13) 10(11) 10(12) 7(11) 6(14)
757
758 † Number in parenthesis represents the number of individuals tested.
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759 Table 5 Probit curves adjusted for positive detections and prey DNA detectability success (DS50) from a single prey specimen.
760

Predator Prey n Slope Intercept d.f. 2 P DS50 (h) 95% f.l. †

Euseius stipulatus Anaphothrips obscurus 57 -0.344 ± 0.101 0.802 ± 0.352 3 0.829 0.843 2.33 0.59 - 3.61

Frankliniella occidentalis 45 -0.392 ± 0.118 0.504 ± 0.340 2 0.889 0.641 1.29 0 - 2.42

Phytoseiulus persimilis 74 -0.082 ± 0.023 1.541 ± 0.298 4 0.302 0.990 18.72 14.11 -30.03
761
762 †f.l.: fiducial limits.

Page 33 of 36

http://mc.manuscriptcentral.com/pm-wiley

Pest Management Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1

2 Figure 1. Example of amplification of multiplex PCR with all species considered together in the same 
3 electropherogram. Nb: N. barkeri; Nc: N. californicus; Tp: T. phialatus; Es: E. stipulatus; Pp: P. 
4 persimilis (Phytoseiidae species included in PCR multiplex); Cl: C. clementina and Fa: F. arundinacea 
5 as representative species of plant detection; Ao: A. obscurus and Fo: F. occidentalis as representative 
6 species of thrips detection; Tu: T. urticae and Pc: P. citri as representative species of tetranychid 
7 detection.

Nb
(93pb)

Nc
(154pb)

Cl, Fa 
(190pb)

Tp
(234pb)

Es
(247; 257pb)

Pp
(267pb)

Ao, Fo
(330pb)

Tu,  Pc
(367pb)
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2 Figure 2. Colored digestive caeca of Euseius stipulatus after taking up blue colored liquid by piercing 
3 the feeding membrane.
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2 Figure 3. Anaphothrips obscurus (A), Frankliniella occidentalis (B) and Phytoseiulus persimilis (C) 
3 DNA detection probability curves in Euseius stipulatus samples after feeding. Lines are fitted with 
4 probit model with 95% confidence intervals (dashed lines) 

5
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