249 research outputs found
Spheroid arrays for high-throughput single-cell analysis of spatial patterns and biomarker expression in 3D
We describe and share a device, methodology and image analysis algorithms, which allow up to 66 spheroids to be arranged into a gel-based array directly from a culture plate for downstream processing and analysis. Compared to processing individual samples, the technique uses 11-fold less reagents, saves time and enables automated imaging. To illustrate the power of the technology, we showcase applications of the methodology for investigating 3D spheroid morphology and marker expression and for in vitro safety and efficacy screens. Firstly, spheroid arrays of 11 cell-lines were rapidly assessed for differences in spheroid morphology. Secondly, highly-positive (SOX-2), moderately-positive (Ki-67) and weakly-positive (βIII-tubulin) protein targets were detected and quantified. Third, the arrays enabled screening of ten media compositions for inducing differentiation in human neurospheres. Lastly, the application of spheroid microarrays for spheroid-based drug-screens was demonstrated by quantifying the dose-dependent drop in proliferation and increase in differentiation in etoposide-treated neurospheres
Prospects of micromass culture technology in tissue engineering
Tissue engineering of bone and cartilage tissue for subsequent implantation is of growing interest in cranio- and maxillofacial surgery. Commonly it is performed by using cells coaxed with scaffolds. Recently, there is a controversy concerning the use of artificial scaffolds compared to the use of a natural matrix. Therefore, new approaches called micromass technology have been invented to overcome these problems by avoiding the need for scaffolds. Technically, cells are dissociated and the dispersed cells are then reaggregated into cellular spheres. The micromass technology approach enables investigators to follow tissue formation from single cell sources to organised spheres in a controlled environment. Thus, the inherent fundamentals of tissue engineering are better revealed. Additionally, as the newly formed tissue is devoid of an artificial material, it resembles more closely the in vivo situation. The purpose of this review is to provide an insight into the fundamentals and the technique of micromass cell culture used to study bone tissue engineering
High-throughput spheroid screens using volume, resazurin reduction and acid phosphatase activity
Mainstream adoption of physiologically-relevant three-dimensional models has been slow in the last 50 years due to long, manual protocols with poor reproducibility, high price and closed commercial platforms. This chapter describes high-throughput, low-cost, open methods for spheroid viability assessment which use readily-available reagents and open-source software to analyse spheroid volume, metabolism and enzymatic activity. We provide two ImageJ macros for automated spheroid size determination - for both single images and for images in stacks. We also share an Excel template spreadsheet allowing users to rapidly process spheroid size data, analyse plate uniformity (such as edge effects and systematic seeding errors), detect outliers and calculate dose-response. The methods would be useful to researchers in preclinical and translational research planning to move away from simplistic monolayer studies and explore 3D spheroid screens for drug safety and efficacy without substantial investment in money or time
Cardiac Tissue Engineering: Implications for Pediatric Heart Surgery
Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery
Detecting differential allelic expression using high-resolution melting curve analysis: application to the breast cancer susceptibility gene CHEK2
<p>Abstract</p> <p>Background</p> <p>The gene <it>CHEK2 </it>encodes a checkpoint kinase playing a key role in the DNA damage pathway. Though <it>CHEK2 </it>has been identified as an intermediate breast cancer susceptibility gene, only a small proportion of high-risk families have been explained by genetic variants located in its coding region. Alteration in gene expression regulation provides a potential mechanism for generating disease susceptibility. The detection of differential allelic expression (DAE) represents a sensitive assay to direct the search for a functional sequence variant within the transcriptional regulatory elements of a candidate gene. We aimed to assess whether <it>CHEK2 </it>was subject to DAE in lymphoblastoid cell lines (LCLs) from high-risk breast cancer patients for whom no mutation in <it>BRCA1</it> or <it>BRCA2</it> had been identified.</p> <p>Methods</p> <p>We implemented an assay based on high-resolution melting (HRM) curve analysis and developed an analysis tool for DAE assessment.</p> <p>Results</p> <p>We observed allelic expression imbalance in 4 of the 41 LCLs examined. All four were carriers of the truncating mutation 1100delC. We confirmed previous findings that this mutation induces non-sense mediated mRNA decay. In our series, we ruled out the possibility of a functional sequence variant located in the promoter region or in a regulatory element of <it>CHEK2 </it>that would lead to DAE in the transcriptional regulatory milieu of freely proliferating LCLs.</p> <p>Conclusions</p> <p>Our results support that HRM is a sensitive and accurate method for DAE assessment. This approach would be of great interest for high-throughput mutation screening projects aiming to identify genes carrying functional regulatory polymorphisms.</p
Study of the chemotactic response of multicellular spheroids in a microfluidic device
YesWe report the first application of a microfluidic device to observe chemotactic migration in
multicellular spheroids. A microfluidic device was designed comprising a central microchamber
and two lateral channels through which reagents can be introduced. Multicellular
spheroids were embedded in collagen and introduced to the microchamber. A gradient of
fetal bovine serum (FBS) was established across the central chamber by addition of growth
media containing serum into one of the lateral channels. We observe that spheroids of oral
squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of
FBS. This invasion is more directional and aggressive than that observed for individual cells
in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular
spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant
shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant
wave engulfs the spheroid before diffusing through it.This work has been supported by National Research Program of Spain (DPI2011-28262-c04-01) and by the project "MICROANGIOTHECAN" (CIBERBBN, IMIBIC and SEOM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo
<p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
DNA methylome analysis identifies accelerated epigenetic aging associated with postmenopausal breast cancer susceptibility
Aim of the study A vast majority of human malignancies are associated with ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker of ageing, known as ‘epigenetic clock’, has been linked with cancer risk factors. This study aimed to evaluate whether the epigenetic clock is associated with breast cancer risk susceptibility and to identify potential epigenetics-based biomarkers for risk stratification. Methods Here, we profiled DNA methylation changes in a nested case–control study embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort (n = 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Horvath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chronological age. Results We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI, 1.007–1.076, P = 0.016). One unit increase in IEAA was associated with a 4% increased odds of developing breast cancer (OR, 1.04; 95% CI, 1.007–1.076). Stratified analysis based on menopausal status revealed that IEAA was associated with development of postmenopausal breast cancers (OR, 1.07; 95% CI, 1.020–1.11, P = 0.003). In addition, methylome-wide analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine (CpG) islands was associated with increased risk of breast cancer development (OR per 1 SD = 1.20; 95 %CI: 1.03–1.40, P = 0.02) whereas mean methylation levels at non-island CpGs were indistinguishable between cancer cases and controls. Conclusion Epigenetic age acceleration and CpG island methylation have a weak, but statistically significant, association with breast cancer susceptibility
- …