182 research outputs found

    Differences between <i>Trypanosoma brucei gambiense</i> groups 1 and 2 in their resistance to killing by Trypanolytic factor 1

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; The three sub-species of &lt;i&gt;Trypanosoma brucei&lt;/i&gt; are important pathogens of sub-Saharan Africa. &lt;i&gt;T. b. brucei&lt;/i&gt; is unable to infect humans due to sensitivity to trypanosome lytic factors (TLF) 1 and 2 found in human serum. &lt;i&gt;T. b. rhodesiense&lt;/i&gt; and &lt;i&gt;T. b. gambiense&lt;/i&gt; are able to resist lysis by TLF. There are two distinct sub-groups of &lt;i&gt;T. b. gambiense&lt;/i&gt; that differ genetically and by human serum resistance phenotypes. Group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; have an invariant phenotype whereas group 2 show variable resistance. Previous data indicated that group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; are resistant to TLF-1 due in-part to reduced uptake of TLF-1 mediated by reduced expression of the TLF-1 receptor (the haptoglobin-hemoglobin receptor (&lt;i&gt;HpHbR&lt;/i&gt;)) gene. Here we investigate if this is also true in group 2 parasites.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology:&lt;/b&gt; Isogenic resistant and sensitive group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; were derived and compared to other T. brucei parasites. Both resistant and sensitive lines express the &lt;i&gt;HpHbR&lt;/i&gt; gene at similar levels and internalized fluorescently labeled TLF-1 similar fashion to &lt;i&gt;T. b. brucei&lt;/i&gt;. Both resistant and sensitive group 2, as well as group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt;, internalize recombinant APOL1, but only sensitive group 2 parasites are lysed.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Our data indicate that, despite group 1 &lt;i&gt;T. b. gambiense&lt;/i&gt; avoiding TLF-1, it is resistant to the main lytic component, APOL1. Similarly group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; is innately resistant to APOL1, which could be based on the same mechanism. However, group 2 &lt;i&gt;T. b. gambiense&lt;/i&gt; variably displays this phenotype and expression does not appear to correlate with a change in expression site or expression of &lt;i&gt;HpHbR&lt;/i&gt;. Thus there are differences in the mechanism of human serum resistance between &lt;i&gt;T. b. gambiense&lt;/i&gt; groups 1 and 2.&lt;/p&gt

    A national study to assess outcomes of definitive chemoradiation regimens in proximal esophageal cancer

    Get PDF
    Background: Proximal esophageal cancer (EC) is commonly treated with definitive chemoradiation (CRT). The radiation dose and type of chemotherapy backbone are still under debate. The objective of this study was to compare the treatment outcomes of contemporary CRT regimens. Material and Methods: In this retrospective observational cohort study, we included patients with locally advanced squamous cell cancer of the proximal esophagus, from 11 centers in the Netherlands, treated with definitive CRT between 2004 and 2014. Each center had a preferential CRT regimen, based on cisplatin (Cis) or carboplatin-paclitaxel (CP) combined with low (≤50.4 Gy) or high (>50.4 Gy) dose radiotherapy (RT). Differences in overall survival (OS) between CRT regimens were assessed using a fully adjusted Cox proportional hazards and propensity score (PS) weighted model. Safety profiles were compared using a multilevel logistic regression model. Results: Two hundred patients were included. Fifty-four, 39, 95, and 12 patients were treated with Cis-low-dose RT, Cis-high-dose RT, CP-low-dose RT, and CP-high-dose RT, respectively. Median follow-up was 62.6 months (95% CI: 47.9–77.2 months). Median OS (21.9 months; 95% CI: 16.9–27.0 months) was comparable between treatment groups (logrank p = .88), confirmed in the fully adjusted and PS weighted model (p > .05). Grades 3–5 acute adverse events were less frequent in patients treated with CP-low-dose RT versus Cis-high-dose RT (OR 3.78; 95% CI: 1.31–10.87; p = .01). The occurrence of grades 3–5 late toxicities was not different between treatment groups. Conclusion: Our study was unable to demonstrate a difference in OS between the CRT regimens, probably related to the relatively small sample size. Based on the superior safety profile, carboplatin and paclitaxel-based CRT regimens are preferred in patients with locally advanced proximal EC

    VHL-Mediated Regulation of CHCHD4 and Mitochondrial Function

    Get PDF
    Dysregulated mitochondrial function is associated with the pathology of a wide range of diseases including renal disease and cancer. Thus, investigating regulators of mitochondrial function is of particular interest. Previous work has shown that the von Hippel-Lindau tumor suppressor protein (pVHL) regulates mitochondrial biogenesis and respiratory chain function. pVHL is best known as an E3-ubiquitin ligase for the α-subunit of the hypoxia inducible factor (HIF) family of dimeric transcription factors. In normoxia, pVHL recognizes and binds hydroxylated HIF-α (HIF-1α and HIF-2α), targeting it for ubiquitination and proteasomal degradation. In this way, HIF transcriptional activity is tightly controlled at the level of HIF-α protein stability. At least 80% of clear cell renal carcinomas exhibit inactivation of the VHL gene, which leads to HIF-α protein stabilization and constitutive HIF activation. Constitutive HIF activation in renal carcinoma drives tumor progression and metastasis. Reconstitution of wild-type VHL protein (pVHL) in pVHL-defective renal carcinoma cells not only suppresses HIF activation and tumor growth, but also enhances mitochondrial respiratory chain function via mechanisms that are not fully elucidated. Here, we show that pVHL regulates mitochondrial function when re-expressed in pVHL-defective 786O and RCC10 renal carcinoma cells distinct from its regulation of HIF-α. Expression of CHCHD4, a key component of the disulphide relay system (DRS) involved in mitochondrial protein import within the intermembrane space (IMS) was elevated by pVHL re-expression alongside enhanced expression of respiratory chain subunits of complex I (NDUFB10) and complex IV (mtCO-2 and COX IV). These changes correlated with increased oxygen consumption rate (OCR) and dynamic changes in glucose and glutamine metabolism. Knockdown of HIF-2α also led to increased OCR, and elevated expression of CHCHD4, NDUFB10, and COXIV in 786O cells. Expression of pVHL mutant proteins (R200W, N78S, D126N, and S183L) that constitutively stabilize HIF-α but differentially promote glycolytic metabolism, were also found to differentially promote the pVHL-mediated mitochondrial phenotype. Parallel changes in mitochondrial morphology and the mitochondrial network were observed. Our study reveals a new role for pVHL in regulating CHCHD4 and mitochondrial function in renal carcinoma cells

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives

    Get PDF
    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases

    Gene expression during normal and FSHD myogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, <it>DUX4</it>, that can encode a protein containing two homeodomains. A <it>DUX4 </it>transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how.</p> <p>Methods</p> <p>Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods.</p> <p>Results</p> <p>Many of the ~17,000 examined genes were differentially expressed (> 2-fold, <it>p </it>< 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked <it>DUX4 </it>RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types.</p> <p>Conclusions</p> <p><it>DUX4</it>'s pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated <it>DUX4 </it>expression at the myoblast or myotube stages. Our model could explain why <it>DUX4</it>'s inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.</p

    A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy

    Get PDF
    The Double homeobox 4 (DUX4) gene is an important regulator of early human development and its aberrant expression is causal for facioscapulohumeral muscular dystrophy (FSHD). The DUX4-full length (DUX4-fl) mRNA splice isoform encodes a transcriptional activator; however, DUX4 and its unique DNA binding preferences are specific to old-world primates. Regardless, the somatic cytotoxicity caused by DUX4 expression is conserved when expressed in cells and animals ranging from fly to mouse. Thus, viable animal models based on DUX4-fl expression have been difficult to generate due in large part to overt developmental toxicity of low DUX4-fl expression from leaky transgenes. We have overcome this obstacle and here we report the generation and initial characterization of a line of conditional floxed DUX4-fl transgenic mice, FLExDUX4, that is viable and fertile. In the absence of cre, these mice express a very low level of DUX4-fl mRNA from the transgene, resulting in mild phenotypes. However, when crossed with appropriate cre-driver lines of mice, the double transgenic offspring readily express DUX4-fl mRNA, protein, and target genes with the spatiotemporal pattern of nuclear cre expression dictated by the chosen system. When cre is expressed from the ACTA1 skeletal muscle-specific promoter, the double transgenic animals exhibit a developmental myopathy. When crossed with tamoxifen-inducible cre lines, DUX4-mediated pathology can be induced in adult animals. Thus, the appearance and progression of pathology can be controlled to provide readily screenable phenotypes useful for assessing therapeutic approaches targeting DUX4-fl mRNA and protein. Overall, the FLExDUX4 line of mice is quite versatile and will allow new investigations into mechanisms of DUX4-mediated pathophysiology as well as much-needed pre-clinical testing of DUX4-targeted FSHD interventions in vivo

    Medical treatment of renal cancer: new horizons.

    Get PDF
    Renal cell carcinoma (RCC) makes up 2-3% of adult cancers. The introduction of tyrosine kinase inhibitors (TKIs) and mammalian target of rapamycin inhibitors in the mid-2000s radically changed the management of RCC. These targeted treatments superseded immunotherapy with interleukin-2 and interferon. The pendulum now appears to be shifting back towards immunotherapy, with the evidence of prolonged overall survival of patients with metastatic RCC on treatment with the anti-programmed cell death 1 ligand monoclonal antibody, nivolumab. Clinical prognostic criteria aid prediction of relapse risk for resected localised disease. Unfortunately, for patients at high risk of relapse, no adjuvant treatment has yet shown benefit, although further trials are yet to report. Clinical prognostic models also have a role in the management of advanced disease; now there is a pressing need for predictive biomarkers to direct therapy. Treatment selection for metastatic disease is currently based on histology, prognostic group and patient preference based on side effect profile. In this article, we review the current medical and surgical management of localised, oligometastatic and advanced RCC, including side effect management and the evidence base for management of poor-risk and non-clear cell disease. We discuss recent results from clinical trials and how these are likely to shape future practice and a renaissance of immunotherapy for renal cell cancer
    corecore