402 research outputs found

    Semi-natural habitats support biological control, pollination and soil conservation in Europe:A review

    Get PDF
    Semi-natural habitats are integral to most agricultural areas and have the potential to support ecosystem services, especially biological control and pollination by supplying resources for the invertebrates providing these services and for soil conservation by preventing erosion and run-off. Some habitats are supported through agri-environment scheme funding in the European Union, but their value for ecosystem service delivery has been questioned. An improved understanding of previous research approaches and outcomes will contribute to the development of more sustainable farming systems, improve experimental designs and highlight knowledge gaps especially for funders and researchers. Here we compiled a systematic map to allow for the first time a review of the quantity of evidence collected in Europe that semi-natural habitats support biological control, pollination and soil conservation. A literature search selected 2252 publications, and, following review, 270 met the inclusion criteria and were entered into the database. Most publications were of pest control (143 publications) with less on pollination (78 publications) or soil-related aspects (31). For pest control and pollination, most publications reported a positive effect of semi-natural habitats. There were weaknesses in the evidence base though because of bias in study location and the crops, whilst metrics (e.g. yield) valued by end users were seldom measured. Hedgerows, woodland and grassland were the most heavily investigated semi-natural habitats, and the wider landscape composition was often considered. Study designs varied considerably yet only 24% included controls or involved manipulation of semi-natural habitats. Service providers were commonly measured and used as a surrogate for ecosystem service delivery. Key messages for policymakers and funders are that they should encourage research that includes more metrics required by end users, be prepared to fund longer-term studies (61% were of only 1-year duration) and investigate the role of soils within semi-natural habitats in delivering ecosystem services

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations

    Get PDF
    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity

    Pilot evaluation of the psychometric properties of a self-medication Risk Assessment Tool among elderly patients in a community setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although community pharmacists in the United Kingdom are expected to assess elderly patients' needs for additional support in managing their medicines, there is limited data on potentially useful assessment tools. We sought to evaluate a 13-item assessment instrument among community dwelling elderly patients, 65 years and above. The instrument is composed of a cognitive risk sub-scale of 6 items and a physical risk sub-scale of 7 items.</p> <p>Findings</p> <p>The instrument was administered to elderly patients in a survey performed in a community to the west of Glasgow, Scotland. The survey recruited 37 participants, 31 from 4 community pharmacies and 6 patients whose medication management tasks were managed by the West Glasgow Community Health and Care Partnership (managed patients). Community pharmacists independently rated 29 of the 37 participants' comprehension of, and dexterity in handling their medicines. We assessed scale reliability, convergent validity and criterion validity. In sub-analyses, we assessed differences in scores between the managed patients and those recruited from the community pharmacies, and between multi-compartment compliance aid users and non-users. The instrument showed satisfactory internal consistency (Cronbach's alpha of 0.792 for 13-item scale). There was significant strong negative correlation between the cognitive risk sub-scores and community pharmacists' assessment of comprehension (ρ = -0.546, p = 0.0038); and physical risk sub-scores and community pharmacists' assessment of dexterity (ρ = -0.491, p = 0.0093). The Area Under the Receiver Operator Characteristic Curve (AUC ± SE; 95%CI) showed that the instrument had good discriminatory capacity (0.86 ± 0.07; 0.68, 0.96). The best cut-off (sensitivity, specificity) was ≄4 (65%, 100%). In the sub-analyses, managed patients had significantly higher cognitive risk sub-scores (6.5 versus 4.0, p = 0.0461) compared to non-managed patients. There was a significant difference in total risk score (4 versus 2, p = 0.0135) and cognitive risk sub-score (4 versus 1.5, p = 0.0029) between users and non-users of multi-compartment compliance aids.</p> <p>Conclusions</p> <p>This instrument shows potential for use in identifying elderly patients who may have problems managing their own medicines in the community setting. However, more robust validity and reliability assessments are needed prior to introduction of the tool into routine practice.</p

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs

    Get PDF
    In a previous study, we used subcutaneous LY80 tumours (a subline of Yoshida sarcoma), Sato lung carcinoma, and methylcholanthrene-induced primary tumours, to demonstrate that a novel water-soluble combretastatin A-4 derivative, AC7700, abruptly and irreversibly stopped tumour blood flow. As a result of this interrupted supply of nutrients, extensive necrosis was induced within the tumour. In the present study, we investigated whether AC7700 acts in the same way against solid tumours growing in the liver, stomach, kidney, muscle, and lymph nodes. Tumour blood flow and the change in tumour blood flow induced by AC7700 were measured by the hydrogen clearance method. In a model of cancer chemotherapy against metastases, LY80 cells (2×106) were injected into the lateral tail vein, and AC7700 at 10 mg kg−1 was injected i.v. five times at intervals of 2 days, starting on day 7 after tumour cell injection. The number and size of tumours were compared with those in the control group. The change in tumour blood flow and the therapeutic effect of AC7700 on microtumours were observed directly by using Sato lung carcinoma implanted in a rat transparent chamber. AC7700 caused a marked decrease in the tumour blood flow of all LY80 tumours developing in various tissues and organs and growth of all tumours including lymph node metastases and microtumours was inhibited. In every tumour, tumour blood flow began to decrease immediately after AC7700 administration and reached a minimum at approximately 30 min after injection. In many tumour capillaries, blood flow completely stopped within 3 min after AC7700 administration. These results demonstrate that AC7700 is effective for tumours growing in various tissues and organs and for metastases. We conclude that tumour blood flow stanching induced by AC7700 may become an effective therapeutic strategy for all cancers, including refractory cancers because the therapeutic effect is independent of tumour site and specific type of cancer

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure
    • 

    corecore