122 research outputs found

    Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region

    Get PDF
    Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days

    The protective gene dose effect of the APOE ε2 allele on gray matter volume in cognitively unimpaired individuals

    Get PDF
    INTRODUCTION: Harboring two copies of the apolipoprotein E (APOE) ε2 allele strongly protects against Alzheimer's disease (AD). However, the effect of this genotype on gray matter (GM) volume in cognitively unimpaired individuals has not yet been described. METHODS: Multicenter brain magnetic resonance images (MRIs) from cognitively unimpaired ε2 homozygotes were matched (1:1) against all other APOE genotypes for relevant confounders (n = 223). GM volumes of ε2 genotypic groups were compared to each other and to the reference group (APOE ε3/ε3). RESULTS: Carrying at least one ε2 allele was associated with larger GM volumes in brain areas typically affected by AD and also in areas associated with cognitive resilience. APOE ε2 homozygotes, but not APOE ε2 heterozygotes, showed larger GM volumes in areas related to successful aging. DISCUSSION: In addition to the known resistance against amyloid-β deposition, the larger GM volumes in key brain regions may confer APOE ε2 homozygotes additional protection against AD-related cognitive decline

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Treatment with Natalizumab in Relapsing–Remitting Multiple Sclerosis Patients Induces Changes in Inflammatory Mechanism

    Get PDF
    Natalizumab is a widely accepted drug for the relapsing–remitting subtype of multiple sclerosis (RRMS). The present longitudinal exploratory study in RRMS patients analyzes the effects of natalizumab treatment on the levels of pro-inflammatory and anti-inflammatory cytokine protein levels and also the frequency and suppressor function of regulatory T cells. Flow cytometry was used to determine cytokines and regulatory T cell frequency while regulatory T cell suppressor function was assayed in vitro at different time-points after starting with natalizumab. Results showed serum levels of pro-inflammatory interferon gamma and interleukin (IL)-12p70, as well as anti-inflammatory IL-4 and IL-10, were elevated just a few hours or days after first IV infusion of natalizumab. Interestingly, other cytokines like IL-5 or IL-13 were also elevated while pro-inflammatory IL-17, IL-2, and IL-1β increased only after a long-term treatment, suggesting different immune mechanisms. In contrast, we did not observe any effect of natalizumab treatment on regulatory T cell frequency or activity. In conclusion, these results suggest natalizumab has other immunological effects beyond VLA-4 interaction and inhibition of CNS extravasation, the relevance of which is as yet unknown and warrants further investigation

    Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum

    Get PDF
    Background: Perivascular spaces (PVS) have an important role in the elimination of metabolic waste from the brain. It has been hypothesized that the enlargement of PVS (ePVS) could be affected by pathophysiological mechanisms involved in Alzheimer’s disease (AD), such as abnormal levels of CSF biomarkers. However, the relationship between ePVS and these pathophysiological mechanisms remains unknown. Objective: We aimed to investigate the association between ePVS and CSF biomarkers of several pathophysiological mechanisms for AD. We hypothesized that ePVS will be associated to CSF biomarkers early in the AD continuum (i.e., amyloid positive cognitively unimpaired individuals). Besides, we explored associations between ePVS and demographic and cardiovascular risk factors. Methods: The study included 322 middle-aged cognitively unimpaired participants from the ALFA + study, many within the Alzheimer’s continuum. NeuroToolKit and Elecsys® immunoassays were used to measure CSF Aβ42, Aβ40, p-tau and t-tau, NfL, neurogranin, TREM2, YKL40, GFAP, IL6, S100, and α-synuclein. PVS in the basal ganglia (BG) and centrum semiovale (CS) were assessed based on a validated 4-point visual rating scale. Odds ratios were calculated for associations of cardiovascular and AD risk factors with ePVS using logistic and multinomial models adjusted for relevant confounders. Models were stratified by Aβ status (positivity defined as Aβ42/40 < 0.071). Results: The degree of PVS significantly increased with age in both, BG and CS regions independently of cardiovascular risk factors. Higher levels of p-tau, t-tau, and neurogranin were significantly associated with ePVS in the CS of Aβ positive individuals, after accounting for relevant confounders. No associations were detected in the BG neither in Aβ negative participants. Conclusions: Our results support that ePVS in the CS are specifically associated with tau pathophysiology, neurodegeneration, and synaptic dysfunction in asymptomatic stages of the Alzheimer’s continuum

    Clinically Isolated Syndromes Suggestive of Multiple Sclerosis: An Optical Coherence Tomography Study

    Get PDF
    Background: Optical coherence tomography (OCT) is a simple, high-resolution technique to quantify the thickness of retinal nerve fiber layer (RNFL), which provides an indirect measurement of axonal damage in multiple sclerosis (MS). This study aimed to evaluate RNFL thickness in patients at presentation with clinically isolated syndromes (CIS) suggestive of MS. Methodology: This was a cross-sectional study. Twenty-four patients with CIS suggestive of MS (8 optic neuritis [ON], 6 spinal cord syndromes, 5 brainstem symptoms and 5 with sensory and other syndromes) were prospectively studied. The main outcome evaluated was RNFL thickness at CIS onset. Secondary objectives were to study the relationship between RNFL thickness and MRI criteria for disease dissemination in space (DIS) as well as the presence of oligoclonal bands in the cerebrospinal fluid. Principal Findings: Thirteen patients had decreased RNFL thickness in at least one quadrant. Mean RNFL thickness was 101.67±10.72 μm in retrobulbar ON eyes and 96.93±10.54 in unaffected eyes. Three of the 6 patients with myelitis had at least one abnormal quadrant in one of the two eyes. Eight CIS patients fulfilled DIS MRI criteria. The presence of at least one quadrant of an optic nerve with a RNFL thickness at a P<5% cut-off value had a sensitivity of 75% and a specificity of 56% for predicting DIS MRI. Conclusions: The findings from this study show that axonal damage measured by OCT is present in any type of CIS; even in myelitis forms, not only in ON as seen up to now. OCT can detect axonal damage in very early stages of disease and seems to have high sensitivity and moderate specificity for predicting DIS MRI. Studies with prospective long-term follow-up would be needed to establish the prognostic value of baseline OCT finding

    Impact of chronic stress protocols in learning and memory in rodents: systematic review and meta-analysis

    Get PDF
    The idea that maladaptive stress impairs cognitive function has been a cornerstone of decades in basic and clinical research. However, disparate findings have reinforced the need to aggregate results from multiple sources in order to confirm the validity of such statement. In this work, a systematic review and meta-analyses were performed to aggregate results from rodent studies investigating the impact of chronic stress on learning and memory. Results obtained from the included studies revealed a significant effect of stress on global cognitive performance. In addition, stressed rodents presented worse consolidation of learned memories, although no significantly differences between groups at the acquisition phase were found. Despite the methodological heterogeneity across studies, these effects were independent of the type of stress, animals' strains or age. However, our findings suggest that stress yields a more detrimental effect on spatial navigation tests' performance. Surprisingly, the vast majority of the selected studies in this field did not report appropriate statistics and were excluded from the quantitative analysis. We have therefore purposed a set of guidelines termed PROBE (Preferred Reporting Orientations for Behavioral Experiments) to promote an adequate reporting of behavioral experiments.This work was funded by the European Commission (FP7) "SwitchBox" (Contract HEALTH-F2-2010-259772) project and co-financed by the Portuguese North Regional Operational Program (ON.2 - O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), and by Fundacao Calouste Gulbenkian (Portugal) (Contract grant number: P-139977; project "Better mental health during ageing based on temporal prediction of individual brain ageing trajectories (TEMPO)"). PSM is supported by an FCT fellowship grant, from the PhD-iHES program, with the reference PDE/BDE/113601/2015.info:eu-repo/semantics/publishedVersio

    A Novel Function of DELTA-NOTCH Signalling Mediates the Transition from Proliferation to Neurogenesis in Neural Progenitor Cells

    Get PDF
    A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA–NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Orchestrated experience-driven Arc responses are disrupted in a mouse model of Alzheimer's disease

    Get PDF
    Experience-induced expression of immediate-early gene Arc/Arg3.1 is known to play a pivotal role in the consolidation of memory. Here we use in-vivo longitudinal multiphoton imaging to show orchestrated activity-dependent expression of Arc in the mouse extrastriate visual cortex in response to a structured visual stimulation. In wild-type mice, the amplitude of the Arc response in individual neurons strongly predicts the probability of reactivation by a subsequent presentation of the same stimulus. In a mouse model of Alzheimer’s disease, this association is markedly disrupted in the cortex specifically near senile plaques. Neurons in the vicinity of plaques are less likely to respond but, paradoxically, there is stronger response in those few neurons around plaques that do respond. To the extent that the orchestrated pattern of Arc expression reflects nervous system responses to, and physiological consolidation of, behavioral experience, the disruption in Arc patterns reveals plaque-associated interference with neural network integration
    corecore