22 research outputs found

    Blocking representation in the ERA-Interim driven EURO-CORDEX RCMs

    Get PDF
    While Regional Climate Models (RCMs) have been shown to yield improved simulations compared to General Circulation Model (GCM), their representation of large-scale phenomena like atmospheric blocking has been hardly addressed. Here, we evaluate the ability of RCMs to simulate blocking situations present in their reanalysis driving data and analyse the associated impacts on anomalies and biases of European 2-m air temperature (TAS) and precipitation rate (PR). Five RCM runs stem from the EURO-CORDEX ensemble while three RCMs are WRF models with different nudging realizations, all of them driven by ERA-Interim for the period 1981?2010. The detected blocking systems are allocated to three sectors of the Euro-Atlantic region, allowing for a characterization of distinctive blocking-related TAS and PR anomalies. Our results indicate some misrepresentation of atmospheric blocking over the EURO-CORDEX domain, as compared to the driving reanalysis. Most of the RCMs showed fewer blocks than the driving data, while the blocking misdetection was negligible for RCMs strongly conditioned to the driving data. A higher resolution of the RCMs did not improve the representation of atmospheric blocking. However, all RCMs are able to reproduce the basic anomaly structure of TAS and PR connected to blocking. Moreover, the associated anomalies do not change substantially after correcting for the misrepresentation of blocking in RCMs. The overall model bias is mainly determined by pattern biases in the representations of surface parameters during non-blocking situations. Biases in blocking detections tend to have a secondary influence in the overall bias due to compensatory effects of missed blockings and non-blockings. However, they can lead to measurable effects in the presence of a strong blocking underestimation.This work was funded by the Austrian Science Fund (FWF) under the project: Understanding Contrasts in high Mountain hydrology in Asia (UNCOMUN: I 1295-N29). This research was supported by the Faculty of Environmental, Regional and Educational Sciences (URBI), University of Graz, as well as the Federal Ministry of Science, Research and Economy (BMWFW) by funding the OeAD Grant Marietta Blau. This work was partially supported (JMG and SH) by the project MULTI-SDM (CGL2015-66583- R, MINECO/FEDER). DB was supported by the PALEOSTRAT (CGL2015-69699-R) project funded by the Spanish Ministry of Economy and Competitiveness (MINECO)

    IFNγ and IL-12 restrict Th2 responses during Helminth/Plasmodium co-infection and promote IFNγ from Th2 cells

    Get PDF
    Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1-/- mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells

    Nutritional quality of a selection of children\u27s packaged food available in Australia

    No full text
    Aim: To assess the nutritional quality of a selection of children’s packaged food products available in Australian supermarkets that were not clear discretionary choices. Methods: Packaged food products targeted towards children were purchased from three Australian regional supermarkets in July 2013. Products that made reference to a core food group ingredient on the product label or did not meet the criteria of a discretionary food were included for analysis. Two methods were used to assess the nutritional quality of the products. These methods involved the Food Standards Australia New Zealand nutrient profiling scoring criterion and a core food group method developed by the researchers. Nutrient composition and ingredients were obtained from the product labels. Products were classified as ‘healthy’ or ‘less healthy’ and the level of agreement between the two methods was compared. Results: Of the 156 children’s food products assessed, 62.2% (n = 97) were classified as ‘less healthy’ using the Food Standards Australia New Zealand nutrient profiling scoring criterion. Using the alternative core food grouping method 66.7% (n = 104) of products surveyed were classified as ‘less healthy’. Conclusions: Many children’s food products available in Australian supermarkets should be considered discretionary choices

    Application of blocking diagnosis methods to General Circulation Models. Part II: model simulations

    No full text
    A previously defined automatic method is applied to reanalysis and present-day (1950-1989) forced simulations of the ECHO-G model in order to assess its performance in reproducing atmospheric blocking in the Northern Hemisphere. Unlike previous methodologies, critical parameters and thresholds to estimate blocking occurrence in the model are not calibrated with an observed reference, but objectively derived from the simulated climatology. The choice of model dependent parameters allows for an objective definition of blocking and corrects for some intrinsic model bias, the difference between model and observed thresholds providing a measure of systematic errors in the model. The model captures reasonably the main blocking features (location, amplitude, annual cycle and persistence) found in observations, but reveals a relative southward shift of Eurasian blocks and an overall underestimation of blocking activity, especially over the Euro-Atlantic sector. Blocking underestimation mostly arises from the model inability to generate long persistent blocks with the observed frequency. This error is mainly attributed to a bias in the basic state. The bias pattern consists of excessive zonal winds over the Euro-Atlantic sector and a southward shift at the exit zone of the jet stream extending into in the Eurasian continent, that are more prominent in cold and warm seasons and account for much of Euro-Atlantic and Eurasian blocking errors, respectively. It is shown that other widely used blocking indices or empirical observational thresholds may not give a proper account of the lack of realism in the model as compared with the proposed method. This suggests that in addition to blocking changes that could be ascribed to natural variability processes or climate change signals in the simulated climate, attention should be paid to significant departures in the diagnosis of phenomena that can also arise from an inappropriate adaptation of detection methods to the climate of the model

    Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation as an initiator of El Niño/Southern Oscillation events

    Get PDF
    Climates across both hemispheres are strongly influenced by tropical Pacific variability associated with the El Niño/Southern Oscillation (ENSO). Conversely, extratropical variability also can affect the tropics. In particular, seasonal-mean alterations of near-surface winds associated with the North Pacific Oscillation (NPO) serve as a significant extratropical forcing agent of ENSO. However, it is still unclear what dynamical processes give rise to year-to-year shifts in these long-lived NPO anomalies. Here we show that intraseasonal variability in boreal winter pressure patterns over the Central North Pacific (CNP) imparts a significant signature upon the seasonal-mean circulations characteristic of the NPO. Further we show that the seasonal-mean signature results in part from year-to-year variations in persistent, quasi-stationary low-pressure intrusions into the subtropics of the CNP, accompanied by the establishment of persistent, quasi-stationary high-pressure anomalies over high latitudes of the CNP. Overall, we find that the frequency of these persistent extratropical anomalies (PEAs) during a given winter serves as a key modulator of intraseasonal variability in extratropical North Pacific circulations and, through their influence on the seasonal-mean circulations in and around the southern lobe of the NPO, the state of the equatorial Pacific 9–12 months later
    corecore