25 research outputs found

    The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia

    Get PDF
    The wide utilization of biocides poses a concern on the impact of these compounds on natural bacterial populations. Furthermore, it has been demonstrated that biocides can select, at least in laboratory experiments, antibiotic resistant bacteria. This situation has raised concerns, not just on scientists and clinicians, but also on regulatory agencies, which are demanding studies on the impact that the utilization of biocides may have on the development on resistance and consequently on the treatment of infectious diseases and on human health. In the present article, we explored the possibility that the widely used biocide triclosan might induce antibiotic resistance using as a model the opportunistic pathogen Stenotrophomonas maltophilia. Biochemical, functional and structural studies were performed, focusing on SmeDEF, the most relevant antibiotic- and triclosan-removing multidrug efflux pump of S. maltophilia. Expression of smeDEF is regulated by the repressor SmeT. Triclosan released SmeT from its operator and induces the expression of smeDEF, thus reducing the susceptibility of S. maltophilia to antibiotics in the presence of the biocide. The structure of SmeT bound to triclosan is described. Two molecules of triclosan were found to bind to one subunit of the SmeT homodimer. The binding of the biocide stabilizes the N terminal domain of both subunits in a conformation unable to bind DNA. To our knowledge this is the first crystal structure obtained for a transcriptional regulator bound to triclosan. This work provides the molecular basis for understanding the mechanisms allowing the induction of phenotypic resistance to antibiotics by triclosan

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728

    Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains

    Get PDF
    Ruiz JC, D'Afonseca V, Silva A, et al. Evidence for Reductive Genome Evolution and Lateral Acquisition of Virulence Functions in Two Corynebacterium pseudotuberculosis Strains. PLoS ONE. 2011;6(4): e18551.Background: Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings: We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions: These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829

    Modelling the response of fresh groundwater to climate and vegetation changes in coral islands

    No full text
    Writing up of the manuscript was partially supported by the Griffith Geoscience Research Award, Ireland. We are grateful to Météo France for access to the temperature and precipitation records, provided through the Climathèque agreement between Météo France and the University of Reunion Island. We are also grateful to P. Bauer-Gottwein for kindly providing the source code of the modified version of SEAWAT that was applied to carry out the phytotoxicity simulations in the last model scenario as well as our colleague R. Cassidy for assistance in code implementation. We thank the associate editor K. Hinsby as well as A. Vandenbohede and two anonymous reviewers for their valuable comments on the manuscript.International audienceIn coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophys-ical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salin-ity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m −3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m −3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands
    corecore