3,918 research outputs found
Proposal for optical parity state re-encoder
We propose a re-encoder to generate a refreshed parity encoded state from an
existing parity encoded state. This is the simplest case of the scheme by
Gilchrist et al. (Phys. Rev. A 75, 052328). We show that it is possible to
demonstrate with existing technology parity encoded quantum gates and
teleportation.Comment: 8 pages, 4 figure
The influence of environmental context in interpersonal observation-execution.
Cyclical upper-limb movements involuntarily deviate from a primary movement direction when the actor concurrently observes incongruent biological motion. We examined whether environmental context influences such motor interference during interpersonal observation-execution. Participants executed continuous horizontal arm movements while observing congruent horizontal or incongruent curvilinear biological movements with or without the presence of an object positioned as an obstacle or distractor. When observing a curvilinear movement, an object located within the movement space became an obstacle, and thus, the curvilinear trajectory was essential to reach into horizontal space. When acting as a distractor, or with no object, the curvilinear trajectory was no longer essential. For observing horizontal movements, objects were located at the same relative locations as in the curvilinear movement condition. We found greater involuntary movement deviation when observing curvilinear compared to the horizontal movements. Also, there was an influence of context only when observing horizontal movements, with greater deviation exhibited in the presence of a large obstacle. These findings suggest the influence of environmental context is underpinned by the (mis-)matching of observed and executed actions as incongruent biological motion is primarily coded via bottom-up sensorimotor processes, whilst the congruent condition incorporates surrounding environmental features to modulate the bottom-up sensorimotor processes
The Influence of Visual Feedback and Prior Knowledge About Feedback on Vertical Aiming Strategies
Two experiments were conducted to examine time and energy optimization strategies for movements made with and against gravity. In Experiment 1, we manipulated concurrent visual feedback, and knowledge about feedback. When vision was eliminated upon movement initiation, participants exhibited greater undershooting, both with their primary submovement and their final endpoint, than when vision was available. When aiming downward, participants were more likely to terminate their aiming following the primary submovement or complete a lower amplitude corrective submovement. This strategy reduced the frequency of energy-consuming corrections against gravity. In Experiment 2, we eliminated vision of the hand and the target at the end of the movement. This procedure was expected to have its greatest impact under no vision conditions where no visual feedback was available for subsequent planning. As anticipated, direction and concurrent visual feedback had a profound impact on endpoint bias. Participants exhibited pronounced undershooting when aiming downward and without vision. Differences in undershooting between vision and no vision were greater under blocked feedback conditions. When performers were uncertain about the impending feedback, they planned their movements for the worst-case scenario. Thus movement planning considers the variability in execution, and avoids outcomes that require time and energy to correct
Two classes of nonlocal Evolution Equations related by a shared Traveling Wave Problem
We consider reaction-diffusion equations and Korteweg-de Vries-Burgers (KdVB)
equations, i.e. scalar conservation laws with diffusive-dispersive
regularization. We review the existence of traveling wave solutions for these
two classes of evolution equations. For classical equations the traveling wave
problem (TWP) for a local KdVB equation can be identified with the TWP for a
reaction-diffusion equation. In this article we study this relationship for
these two classes of evolution equations with nonlocal diffusion/dispersion.
This connection is especially useful, if the TW equation is not studied
directly, but the existence of a TWS is proven using one of the evolution
equations instead. Finally, we present three models from fluid dynamics and
discuss the TWP via its link to associated reaction-diffusion equations
The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010
Recent laboratory and field studies have indicated that glyoxal is a potentially large contributor to secondary organic aerosol mass. We present in situ glyoxal measurements acquired with a recently developed, high sensitivity spectroscopic instrument during the CalNex 2010 field campaign in Pasadena, California. We use three methods to quantify the production and loss of glyoxal in Los Angeles and its contribution to organic aerosol. First, we calculate the difference between steady state sources and sinks of glyoxal at the Pasadena site, assuming that the remainder is available for aerosol uptake. Second, we use the Master Chemical Mechanism to construct a two-dimensional model for gas-phase glyoxal chemistry in Los Angeles, assuming that the difference between the modeled and measured glyoxal concentration is available for aerosol uptake. Third, we examine the nighttime loss of glyoxal in the absence of its photochemical sources and sinks. Using these methods we constrain the glyoxal loss to aerosol to be 0-5 × 10-5 s-1 during clear days and (1 ± 0.3) × 10-5 s-1 at night. Between 07:00-15:00 local time, the diurnally averaged secondary organic aerosol mass increases from 3.2 μg m-3 to a maximum of 8.8 μg m -3. The constraints on the glyoxal budget from this analysis indicate that it contributes 0-0.2 μg m-3 or 0-4% of the secondary organic aerosol mass. Copyright 2011 by the American Geophysical Union
Recommended from our members
Words, rules, and mechanisms of language acquisition
We review recent artificial language learning studies, especially those following Endress and Bonatti (2007), suggesting that humans can deploy a variety of learning mechanisms to acquire artificial languages. Several experiments provide evidence for multiple learning mechanisms that can be deployed in fluent speech: one mechanism encodes the positions of syllables within words and can be used to extract generalization, while the other registers co-occurrence statistics of syllables and can be used to break a continuum into its components. We review dissociations between these mechanisms and their potential role in language acquisition. We then turn to recent criticisms of the multiple mechanisms hypothesis and show that they are inconsistent with the available data. Our results suggest that artificial and natural language learning is best understood by dissecting the underlying specialized learning abilities, and that these data provide a rare opportunity to link important language phenomena to basic psychological mechanisms
The Study of Rule-Governed Behavior and Derived Stimulus Relations: Bridging the Gap
The concept of rule-governed behavior or instructional control has been widely recognized for many decades within the behavior-analytic literature. It has also been argued that the human capacity to formulate and follow increasingly complex rules may undermine sensitivity to direct contingencies of reinforcement, and that excessive reliance upon rules may be an important variable in human psychological suffering. Although the concept of rules would appear to have been relatively useful within behavior analysis, it seems wise from time to time to reflect upon the utility of even well-established concepts within a scientific discipline. Doing so may be particularly important if it begins to emerge that the existing concept does not readily orient researchers toward potentially important variables associated with that very concept. The primary purpose of this article is to engage in this reflection. In particular, we will focus on the link that has been made between rule-governed behavior and derived relational responding, and consider the extent to which it might be useful to supplement talk of rules or instructions with terms that refer to the dynamics of derived relational responding
Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention.
We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics
Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.
OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock.
METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact.
RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring.
CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock
- …