1,223 research outputs found

    A Twin Study of Early-Childhood Asthma in Puerto Ricans

    Get PDF
    Background:The relative contributions of genetics and environment to asthma in Hispanics or to asthma in children younger than 3 years are not well understood.Objective:To examine the relative contributions of genetics and environment to early-childhood asthma by performing a longitudinal twin study of asthma in Puerto Rican children ≀3 years old.Methods:678 twin infants from the Puerto Rico Neo-Natal Twin Registry were assessed for asthma at age 1 year, with follow-up data obtained for 624 twins at age 3 years. Zygosity was determined by DNA microsatellite profiling. Structural equation modeling was performed for three phenotypes at ages 1 and 3 years: physician-diagnosed asthma, asthma medication use in the past year, and ≄1 hospitalization for asthma in the past year. Models were additionally adjusted for early-life environmental tobacco smoke exposure, sex, and age.Results:The prevalences of physician-diagnosed asthma, asthma medication use, and hospitalization for asthma were 11.6%, 10.8%, 4.9% at age 1 year, and 34.1%, 40.1%, and 8.5% at 3 years, respectively. Shared environmental effects contributed to the majority of variance in susceptibility to physician-diagnosed asthma and asthma medication use in the first year of life (84%-86%), while genetic effects drove variance in all phenotypes (45%-65%) at age 3 years. Early-life environmental tobacco smoke, sex, and age contributed to variance in susceptibility.Conclusion:Our longitudinal study in Puerto Rican twins demonstrates a changing contribution of shared environmental effects to liability for physician-diagnosed asthma and asthma medication use between ages 1 and 3 years. Early-life environmental tobacco smoke reduction could markedly reduce asthma morbidity in young Puerto Rican children. © 2013 Bunyavanich et al

    Mothers’ self-focused reflective functioning interacts with childhood experiences of rejection to predict romantic relationship quality and insensitive parenting

    Get PDF
    Parents exposed to rejection in their childhood could experience bonding disturbances in their current relationships. Reflective functioning (RF), the capacity to understand one’s own and others’ behavior through the lens of underlying mental states (cognitions, emotions), has been identified as a potential protective process. The aim of this longitudinal study was to examine whether RF moderates the effect of parents’ experiences of rejection in childhood on later relationship functioning with partners and infants. Pregnant women with experiences of abuse and neglect were recruited and completed the Adult Attachment Interview, which was coded for RF and experiences of childhood rejection. During two follow‐up assessments, when their infants were 5 and 17 months old, the mothers in our sample who had partners reported on dyadic cohesion with these partners. Further, at 5 months postnatal, mothers completed interaction tasks with their infants, which were later assessed using observational measures (i.e., CARE‐Index). Results of mothers with partners (N = 93) indicated that RF moderated the relationship between dyadic cohesion with partners at 17 months only. Additionally, results with all mothers in the sample (N = 108) indicated that RF moderated the relationship between retrospectively reported experiences of rejection and controlling and unresponsive behaviors with infants. Adequate‐to‐high RF was associated with lower unresponsiveness and higher relationship satisfaction in the context of rejection, while being associated with higher levels of control. These findings have important clinical implications, as RF is amenable to change and can therefore be more prominently implemented within various interventions

    Effect of Calf Gender on Milk Yield and Fatty Acid Content in Holstein Dairy Cows

    Get PDF
    The scale of sexed semen use to avoid the birth of unwanted bull calves in the UK dairy industry depends on several economic factors. It has been suggested in other studies that calf gender may affect milk yield in Holsteins- something that would affect the economics of sexed semen use. The present study used a large milk recording data set to evaluate the effect of calf gender (both calf born and calf in utero) on both milk yield and saturated fat content. Linear regression was used to model data for first lactation and second lactation separately. Results showed that giving birth to a heifer calf conferred a 1% milk yield advantage in first lactation heifers, whilst giving birth to a bull calf conferred a 0.5% advantage in second lactation. Heifer calves were also associated with a 0.66kg reduction in saturated fatty acid content of milk in first lactation, but there was no significant difference between the genders in second lactation. No relationship was found between calf gender and milk mono- or polyunsaturated fatty acid content. The observed effects of calf gender on both yield and saturated fatty acid content was considered minor when compared to nutritional and genetic influences

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Aspirin use and knowledge in the community: a population- and health facility based survey for measuring local health system performance

    Get PDF
    BACKGROUND: Little is known about the relationship between cardiovascular risk, disease and actual use of aspirin in the community. METHODS: The Measuring Disparities in Chronic Conditions (MDCC) study is a community and health facility-based survey designed to track disparities in the delivery of health interventions for common chronic diseases. MDCC includes a survey instrument designed to collect detailed information about aspirin use. In King County, WA between 2011 and 2012, we surveyed 4633 white, African American, or Hispanic adults (45% home address-based sample, 55% health facility sample). We examined self-reported counseling on, frequency of use and risks of aspirin for all respondents. For a subgroup free of CAD or cerebral infarction that underwent physical examination, we measured 10-year coronary heart disease risk and blood salicylate concentration. RESULTS: Two in five respondents reported using aspirin routinely while one in five with a history of CAD or cerebral infarction and without contraindication did not report routine use of aspirin. Women with these conditions used less aspirin than men (65.0% vs. 76.5%) and reported more health problems that would make aspirin unsafe (29.4% vs. 21.2%). In a subgroup undergoing phlebotomy a third of respondents with low cardiovascular risk used aspirin routinely and only 4.6% of all aspirin users had no detectable salicylate in their blood. CONCLUSIONS: In this large urban county where health care delivery should be of high quality, there is insufficient aspirin use among those with high cardiovascular risk or disease and routine aspirin use by many at low risk. Further efforts are needed to promote shared-decision making between patients and clinicians as well as inform the public about appropriate use of routine aspirin to reduce the burden of atherosclerotic vascular disease

    Finite-size and correlation-induced effects in Mean-field Dynamics

    Full text link
    The brain's activity is characterized by the interaction of a very large number of neurons that are strongly affected by noise. However, signals often arise at macroscopic scales integrating the effect of many neurons into a reliable pattern of activity. In order to study such large neuronal assemblies, one is often led to derive mean-field limits summarizing the effect of the interaction of a large number of neurons into an effective signal. Classical mean-field approaches consider the evolution of a deterministic variable, the mean activity, thus neglecting the stochastic nature of neural behavior. In this article, we build upon two recent approaches that include correlations and higher order moments in mean-field equations, and study how these stochastic effects influence the solutions of the mean-field equations, both in the limit of an infinite number of neurons and for large yet finite networks. We introduce a new model, the infinite model, which arises from both equations by a rescaling of the variables and, which is invertible for finite-size networks, and hence, provides equivalent equations to those previously derived models. The study of this model allows us to understand qualitative behavior of such large-scale networks. We show that, though the solutions of the deterministic mean-field equation constitute uncorrelated solutions of the new mean-field equations, the stability properties of limit cycles are modified by the presence of correlations, and additional non-trivial behaviors including periodic orbits appear when there were none in the mean field. The origin of all these behaviors is then explored in finite-size networks where interesting mesoscopic scale effects appear. This study leads us to show that the infinite-size system appears as a singular limit of the network equations, and for any finite network, the system will differ from the infinite system

    Fluctuating selection models and Mcdonald-Kreitman type analyses

    Get PDF
    It is likely that the strength of selection acting upon a mutation varies through time due to changes in the environment. However, most population genetic theory assumes that the strength of selection remains constant. Here we investigate the consequences of fluctuating selection pressures on the quantification of adaptive evolution using McDonald-Kreitman (MK) style approaches. In agreement with previous work, we show that fluctuating selection can generate evidence of adaptive evolution even when the expected strength of selection on a mutation is zero. However, we also find that the mutations, which contribute to both polymorphism and divergence tend, on average, to be positively selected during their lifetime, under fluctuating selection models. This is because mutations that fluctuate, by chance, to positive selected values, tend to reach higher frequencies in the population than those that fluctuate towards negative values. Hence the evidence of positive adaptive evolution detected under a fluctuating selection model by MK type approaches is genuine since fixed mutations tend to be advantageous on average during their lifetime. Never-the-less we show that methods tend to underestimate the rate of adaptive evolution when selection fluctuates

    Species Differentiation on a Dynamic Landscape: Shifts in Metapopulation Genetic Structure Using the Chronology of the Hawaiian Archipelago

    Get PDF
    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation
    • 

    corecore