7,580 research outputs found

    Epidemiological characteristics of Pandemic Influenza A (H1N1-2009) in Zhanjiang, China

    Get PDF
    Background: A novel influenza A virus strain (H1N1-2009) spread first in Mexico and the United Stated in late April 2009, leading to the first influenza pandemic of the 21st century. The objective of this study was to determine the epidemiological and virological characteristics of the pandemic influenza A (H1N1-2009) in Zhanjiang, China. Methods: The case and outbreak reports of influenza-like illness (ILI) were collected from the Chinese information system of disease control and prevention and the influenza surveillance system of Zhanjiang city. Real-time RT-PCR was conducted, and epidemic and virological characteristics of the virus were analyzed using descriptive epidemiological methods and Chi-square trend tests. Results: A total of 276 reported cases were confirmed from July 16, 2009 to June 30, 2010. The attack rate of outbreak was from 1.1% to 6.0%. The disease peak occurred in December 2009, after which the outbreak subsided gradually. The last case was confirmed in April 2010. Conclusion: The main population struck by the H1N1-2009 virus was young adults, youths and children. The outbreaks most frequently occurred in schools, and most cases were acquired locally

    Rapid assessment of surface-water flood-management options in urban catchments

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Surface-water flooding in urban areas has become a pressing issue due to changing precipitation patterns, expanding urban areas and ageing drainage infrastructure. Selection of flood-management options for widespread implementation using quantitative performance measures is both technically and computationally demanding, which limits the evidence available for decision support. This study presents a new framework for surface-water flood-intervention assessment at high resolution. The framework improves computational efficiency through utilisation of accessible data, simplified representations of interventions and a resource efficient cellular automata flood model. The advantages of this framework are demonstrated through an example case study where the performance of 12 high-level intervention strategies has been evaluated. Results from the case study demonstrate that the framework is able to provide quantitative performance values for a range of interventions. The speed of analysis supports the application of the framework as a decision-making tool for urban water planning.This research was supported by three UK research council funded programmes: the EPSRC Centre for Doctoral Training in Water Informatics Science and Engineering [grant number EP/L016214/1], the EPSRC research fellowship Safe & SuRe water management [grant number EP/K006924/1], and the NERC project SINATRA - Susceptibility of catchments to INTense RAinfall and flooding [grant number NE/K008765/1]. LiDAR was provided by the Environment Agency and mapping was provided through OS Mastermap data on the Digimap service

    Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3

    Get PDF
    double Holliday junction (dHJ) is a central intermediate of homologous recombination that can be processed to yield crossover or non-crossover recombination products. To preserve genomic integrity, cells possess mechanisms to avoid crossing over. We show that Saccharomyces cerevisiae Sgs1 and Top3 proteins are sufficient to migrate and disentangle a dHJ to produce exclusively non-crossover recombination products, in a reaction termed "dissolution." We show that Rmi1 stimulates dHJ dissolution at low Sgs1-Top3 protein concentrations, although it has no effect on the initial rate of Holliday junction (HJ) migration. Rmi1 serves to stimulate DNA decatenation, removing the last linkages between the repaired and template DNA molecules. Dissolution of a dHJ is a highly efficient and concerted alternative to nucleolytic resolution that prevents crossing over of chromosomes during recombinational DNA repair in mitotic cells and thereby contributes to genomic integrity

    Curvature-direction measures of self-similar sets

    Full text link
    We obtain fractal Lipschitz-Killing curvature-direction measures for a large class of self-similar sets F in R^d. Such measures jointly describe the distribution of normal vectors and localize curvature by analogues of the higher order mean curvatures of differentiable submanifolds. They decouple as independent products of the unit Hausdorff measure on F and a self-similar fibre measure on the sphere, which can be computed by an integral formula. The corresponding local density approach uses an ergodic dynamical system formed by extending the code space shift by a subgroup of the orthogonal group. We then give a remarkably simple proof for the resulting measure version under minimal assumptions.Comment: 17 pages, 2 figures. Update for author's name chang

    Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators

    Get PDF
    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-BCS behavior. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    Improved genome editing in human cell lines using the CRISPR method

    Get PDF
    The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1

    From site-focused intervention towards landscape-scale surface water management using Synthetic Stream Networks and Rapid Scenario Screening

    Get PDF
    This is the final version. Available on open access from IWA Publishing via the DOI in this recordData availability statement: All relevant data are included in the paper or its Supplementary InformationThis research addresses the need to transform success in technical understanding and practical implementation of surface water management (SWM) interventions at a site-scale towards integrated landscape-scale management. We achieve this through targeting the informative preliminary stages of strategic design, where broad, early and effective exploration of opportunities can enhance and direct a regional SWM perspective. We present a new method, ‘Synthetic Stream Networks’ (SSN), capable of meeting these requirements by taking advantage of easily accessible data, likely to be available during regional screening. We find that results from the SSN are validated by existing, ‘downstream’ focused data (90% of the river network is within 30 m of an associated SSN flow path), with the added advantage of extending understanding of surface water exceedance flow paths and watersheds into the upper catchment, thus establishing a foundational and physically based sub-catchment management unit exploring surface water connectivity at a catchment and landscape scale. We also demonstrate collaborative advantages of twinning the new SSN method with ‘Rapid Scenario Screening’ (RSS) to develop a novel approach for identifying, exploring and evaluating SWM interventions. Overall, we find that this approach addresses challenges of integrating understanding from sub-catchment, catchment and landscape perspectives within surface water management.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC

    Quantum encryption with certified deletion

    Get PDF
    Given a ciphertext, is it possible to prove the deletion of the underlying plaintext? Since classical ciphertexts can be copied, clearly such a feat is impossible using classical information alone. In stark contrast to this, we show that quantum encodings enable certified deletion. More precisely, we show that it is possible to encrypt classical data into a quantum ciphertext such that the recipient of the ciphertext can produce a classical string which proves to the originator that the recipient has relinquished any chance of recovering the plaintext should the decryption key be revealed. Our scheme is feasible with current quantum technology: the honest parties only require quantum devices for single-qubit preparation and measurements; the scheme is also robust against noise in these devices. Furthermore, we provide an analysis that is suitable in the finite-key regime.Comment: 28 pages, 1 figure. Some technical details modifie
    corecore