2,682 research outputs found
Trauma as counter-revolutionary colonisation: narratives from (post)revolutionary Egypt
We argue that multiple levels of trauma were present in Egypt before, during and after the 2011 revolution. Individual, social and political trauma constitute a triangle of traumatisation which was strategically employed by the Egyptian counter-revolutionary forces – primarily the army and the leadership of the Muslim Brotherhood – to maintain their political and economic power over and above the social, economic and political interests of others. Through the destruction of physical bodies, the fragmentation and polarisation of social relations and the violent closure of the newly emerged political public sphere, these actors actively repressed the potential for creative and revolutionary transformation. To better understand this multi-layered notion of trauma, we turn to Habermas’ ‘colonisation of the lifeworld’ thesis which offers a critical lens through which to examine the wider political and economic structures and context in which trauma occurred as well as its effects on the personal, social and political realms. In doing so, we develop a novel conception of trauma that acknowledges individual, social and political dimensions. We apply this conceptual framing to empirical narratives of trauma in Egypt’s pre- and post-revolutionary phases, thus both developing a non-Western application of Habermas’ framework and revealing ethnographic accounts of the revolution by activists in Cairo
A single sub-km Kuiper Belt object from a stellar Occultation in archival data
The Kuiper belt is a remnant of the primordial Solar System. Measurements of
its size distribution constrain its accretion and collisional history, and the
importance of material strength of Kuiper belt objects (KBOs). Small, sub-km
sized, KBOs elude direct detection, but the signature of their occultations of
background stars should be detectable. Observations at both optical and X-ray
wavelengths claim to have detected such occultations, but their implied KBO
abundances are inconsistent with each other and far exceed theoretical
expectations. Here, we report an analysis of archival data that reveals an
occultation by a body with a 500 m radius at a distance of 45 AU. The
probability of this event to occur due to random statistical fluctuations
within our data set is about 2%. Our survey yields a surface density of KBOs
with radii larger than 250 m of 2.1^{+4.8}_{-1.7} x 10^7 deg^{-2}, ruling out
inferred surface densities from previous claimed detections by more than 5
sigma. The fact that we detected only one event, firmly shows a deficit of
sub-km sized KBOs compared to a population extrapolated from objects with r>50
km. This implies that sub-km sized KBOs are undergoing collisional erosion,
just like debris disks observed around other stars.Comment: To appear in Nature on December 17, 2009. Under press embargo until
  1800 hours London time on 16 December. 19 pages; 7 figure
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
  fig
Mutual information rate and bounds for it
The amount of information exchanged per unit of time between two nodes in a
dynamical network or between two data sets is a powerful concept for analysing
complex systems. This quantity, known as the mutual information rate (MIR), is
calculated from the mutual information, which is rigorously defined only for
random systems. Moreover, the definition of mutual information is based on
probabilities of significant events. This work offers a simple alternative way
to calculate the MIR in dynamical (deterministic) networks or between two data
sets (not fully deterministic), and to calculate its upper and lower bounds
without having to calculate probabilities, but rather in terms of well known
and well defined quantities in dynamical systems. As possible applications of
our bounds, we study the relationship between synchronisation and the exchange
of information in a system of two coupled maps and in experimental networks of
coupled oscillators
Fast fluorescence microscopy for imaging the dynamics of embryonic development
Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Mass extinctions drove increased global faunal cosmopolitanism on the supercontinent Pangaea
Mass extinctions have profoundly impacted the evolution of life through not only reducing taxonomic diversity but also reshaping ecosystems and biogeographic patterns. In particular, they are considered to have driven increased biogeographic cosmopolitanism, but quantitative tests of this hypothesis are rare and have not explicitly incorporated information on evolutionary relationships. Here we quantify faunal cosmopolitanism using a phylogenetic network approach for 891 terrestrial vertebrate species spanning the late Permian through Early Jurassic. This key interval witnessed the Permian–Triassic and Triassic–Jurassic mass extinctions, the onset of fragmentation of the supercontinent Pangaea, and the origins of dinosaurs and many modern vertebrate groups. Our results recover significant increases in global faunal cosmopolitanism following both mass extinctions, driven mainly by new, widespread taxa, leading to homogenous ‘disaster faunas’. Cosmopolitanism subsequently declines in post-recovery communities. These shared patterns in both biotic crises suggest that mass extinctions have predictable influences on animal distribution and may shed light on biodiversity loss in extant ecosystems
Bench-to-bedside review: The gut as an endocrine organ in the critically ill
In health, hormones secreted from the gastrointestinal tract have an important role in regulating gastrointestinal motility, glucose metabolism and immune function. Recent studies in the critically ill have established that the secretion of a number of these hormones is abnormal, which probably contributes to disordered gastrointestinal and metabolic function. Furthermore, manipulation of endogenous secretion, physiological replacement and supra-physiological treatment (pharmacological dosing) of these hormones are likely to be novel therapeutic targets in this group. Fasting ghrelin concentrations are reduced in the early phase of critical illness, and exogenous ghrelin is a potential therapy that could be used to accelerate gastric emptying and/or stimulate appetite. Motilin agonists, such as erythromycin, are effective gastrokinetic drugs in the critically ill. Cholecystokinin and peptide YY concentrations are elevated in both the fasting and postprandial states, and are likely to contribute to slow gastric emptying. Accordingly, there is a rationale for the therapeutic use of their antagonists. So-called incretin therapies (glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide) warrant evaluation in the management of hyperglycaemia in the critically ill. Exogenous glucagon-like peptide-2 (or its analogues) may be a potential therapy because of its intestinotropic properties
Limited contribution of permafrost carbon to methane release from thawing peatlands
Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands
- …
