1,172 research outputs found

    Feasibility of kilohertz frequency alternating current neuromodulation of carotid sinus nerve activity in the pig

    Get PDF
    Recent research supports that over-activation of the carotid body plays a key role in metabolic diseases like type 2 diabetes. Supressing carotid body signalling through carotid sinus nerve (CSN) modulation may offer a therapeutic approach for treating such diseases. Here we anatomically and histologically characterised the CSN in the farm pig as a recommended path to translational medicine. We developed an acute in vivo porcine model to assess the application of kilohertz frequency alternating current (KHFAC) to the CSN of evoked chemo-afferent CSN responses. Our results demonstrate the feasibility of this approach in an acute setting, as KHFAC modulation was able to successfully, yet variably, block evoked chemo-afferent responses. The observed variability in blocking response is believed to reflect the complex and diverse anatomy of the porcine CSN, which closely resembles human anatomy, as well as the need for optimisation of electrodes and parameters for a human-sized nerve. Overall, these results demonstrate the feasibility of neuromodulation of the CSN in an anesthetised large animal model, and represent the first steps in driving KHFAC modulation towards clinical translation. Chronic recovery disease models will be required to assess safety and efficacy of this potential therapeutic modality for application in diabetes treatment

    Spatially anisotropic S=1 square-lattice antiferromagnet with single-ion anisotropy realized in a Ni(II) pyrazine- n,n′ -dioxide coordination polymer

    Get PDF
    The Ni(NCS)2(pyzdo)2 coordination polymer is found to be an S=1 spatially anisotropic square lattice with easy-axis single-ion anisotropy. This conclusion is based upon considering in concert the experimental probes x-ray diffraction, magnetic susceptibility, magnetic-field-dependent heat capacity, muon-spin relaxation, neutron diffraction, neutron spectroscopy, and pulsed-field magnetization. Long-range antiferromagnetic (AFM) order develops at TN=18.5K. Although the samples are polycrystalline, there is an observable spin-flop transition and saturation of the magnetization at ≈80T. Linear spin-wave theory yields spatially anisotropic exchanges within an AFM square lattice, Jx=0.235meV, Jy=2.014meV, and an easy-axis single-ion anisotropy D=-1.622meV (after renormalization). The anisotropy of the exchanges is supported by density functional theory

    High expression of focal adhesion kinase (p125(FAK)) in node-negative breast cancer is related to overexpression of HER-2/neu and activated Akt kinase but does not predict outcome

    Get PDF
    INTRODUCTION: Focal adhesion kinase (FAK) regulates multiple cellular processes including growth, differentiation, adhesion, motility and apoptosis. In breast carcinoma, FAK overexpression has been linked to cancer progression but the prognostic relevance remains unknown. In particular, with regard to lymph node-negative breast cancer it is important to identify high-risk patients who would benefit from further adjuvant therapy. METHODS: We analyzed 162 node-negative breast cancer cases to determine the prognostic relevance of FAK expression, and we investigated the relationship of FAK with major associated signaling pathways (HER2, Src, Akt and extracellular regulated kinases) by immunohistochemistry and western blot analysis. RESULTS: Elevated FAK expression did not predict patient outcome, in contrast to tumor grading (P = 0.005), Akt activation (P = 0.0383) and estrogen receptor status (P = 0.0033). Significant positive correlations were observed between elevated FAK expression and HER2 overexpression (P = 0.001), as well as phospho-Src Tyr-215 (P = 0.021) and phospho-Akt (P < 0.001), but not with phospho-ERK1/2 (P = 0.108). Western blot analysis showed a significant correlation of FAK Tyr-861 activation and HER2 overexpression (P = 0.01). CONCLUSIONS: Immunohistochemical detection of FAK expression is of no prognostic significance in node-negative breast cancer but provides evidence that HER2 is involved in tumor malignancy and metastatic ability of breast cancer through a novel signaling pathway participating FAK and Src

    A collaborative approach to forecasting product–service systems (PSS)

    Get PDF
    Copyright @ Springer-Verlag London Limited 2010. The final version of this article may be viewed at the link below.This paper examines the forecasting implications for product–service systems (PSS) applications in manufacturing firms. The approach taken is to identify the scope of operations for PSS applications by identifying all the activities associated with the service deployment in the telecom sector. The paper then develops a revenue model for manufacturing firms providing PSS applications. The revenue model identifies three generic revenue streams that provide the basis for discussion on the differences in forecasting approaches, including collaborative approaches based on PSS staff being geographically co-located

    Molecular Binding Mechanism of TtgR Repressor to Antibiotics and Antimicrobials

    Get PDF
    A disturbing phenomenon in contemporary medicine is the prevalence of multidrug-resistant pathogenic bacteria. Efflux pumps contribute strongly to this antimicrobial drug resistance, which leads to the subsequent failure of clinical treatments. The TtgR protein of Pseudomonas putida is a HTH-type transcriptional repressor that controls expression of the TtgABC efflux pump, which is the main contributor to resistance against several antimicrobials and toxic compounds in this microbe. One of the main strategies to modulate the bacterial resistance is the rational modification of the ligand binding target site. We report the design and characterization of four mutants-TtgRS77A, TtgRE78A, TtgRN110A and TtgRH114A - at the active ligand binding site. The biophysical characterization of the mutants, in the presence and in the absence of different antimicrobials, revealed that TtgRN110A is the variant with highest thermal stability, under any of the experimental conditions tested. EMSA experiments also showed a different dissociation pattern from the operator for TtgRN110A, in the presence of several antimicrobials, making it a key residue in the TtgR protein repression mechanism of the TtgABC efflux pump. We found that TtgRE78A stability is the most affected upon effector binding. We also probe that one mutation at the C-terminal half of helix-α4, TtgRS77A, provokes a severe protein structure distortion, demonstrating the important role of this residue in the overall protein structure and on the ligand binding site. The data provide new information and deepen the understanding of the TtgR-effector binding mechanism and consequently the TtgABC efflux pump regulation mechanism in Pseudomonas putida.This work was supported by Spanish Ministry of Economy and Competitiveness, National programme for Recruitment and Incorporation of Human Resources, Subprogramme: Ramon y Cajal RYC-2009-04570 and grant P11-CVI-7391 from Junta de Andalucía and EFDR (European Regional Development Fund)

    Deterministic control of magnetic vortex wall chirality by electric field

    Get PDF
    Concepts for information storage and logical processing based on magnetic domain walls have great potential for implementation in future information and communications technologies. To date, the need to apply power hungry magnetic fields or heat dissipating spin polarized currents to manipulate magnetic domain walls has limited the development of such technologies. The possibility of controlling magnetic domain walls using voltages offers an energy efficient route to overcome these limitations. Here we show that a voltage-induced uniaxial strain induces reversible deterministic switching of the chirality of a magnetic vortex wall. We discuss how this functionality will be applicable to schemes for information storage and logical processing, making a significant step towards the practical implementation of magnetic domain walls in energy efficient computing

    Expression of OATP Family Members in Hormone-Related Cancers: Potential Markers of Progression

    Get PDF
    The organic anion transporting polypeptide (OATP) family of transporters has been implicated in prostate cancer disease progression probably by transporting hormones or drugs. In this study, we aimed to elucidate the expression, frequency, and relevance of OATPs as a biomarker in hormone-dependent cancers. We completed a study examining SLCO1B3, SLCO1B1 and SLCO2B1 mRNA expression in 381 primary, independent patient samples representing 21 cancers and normal tissues. From a separate cohort, protein expression of OATP1B3 was examined in prostate, colon, and bladder tissue. Based on expression frequency, SLCO2B1 was lower in liver cancer (P = 0.04) which also trended lower with decreasing differentiation (P = 0.004) and lower magnitude in pancreatic cancer (P = 0.05). SLCO2B1 also had a higher frequency in thyroid cancer (67%) than normal (0%) and expression increased with stage (P = 0.04). SLCO1B3 was expressed in 52% of cancerous prostate samples and increased SLCO1B3 expression trended with higher Gleason score (P = 0.03). SLCO1B3 expression was also higher in testicular cancer (P = 0.02). SLCO1B1 expression was lower in liver cancer (P = 0.04) which trended lower with liver cancer grade (P = 0.0004) and higher with colon cancer grade (P = 0.05). Protein expression of OATP1B3 was examined in normal and cancerous prostate, colon, and bladder tissue samples from an independent cohort. The results were similar to the transcription data, but showed distinct localization. OATPs correlate to differentiation in certain hormone-dependent cancers, thus may be useful as biomarkers for assessing clinical treatment and stage of disease

    Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death

    Get PDF
    The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors, is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function as a 'danger signal' in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body. In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin, embryological development, bone formation and resorption, as well as in cancer. Cell Death and Disease (2010) 1, e9; doi:10.1038/cddis.2009.11; published online 14 January 201

    Signal transduction events induced by extracellular guanosine 5′triphosphate in excitable cells

    Get PDF
    A better understanding of the physiological effects of guanosine-based purines should help clarify the complex subject of purinergic signalling. We studied the effect of extracellular guanosine 5′triphosphate (GTP) on the differentiation of two excitable cell lines that both have specific binding sites for GTP: PC12 rat pheochromocytoma cells and C2C12 mouse skeletal muscle cells. PC12 cells can be differentiated into fully functional sympathetic-like neurons with 50′00 ng ml−1 of nerve growth factor, whereas serum starvation causes C2C12 cells to differentiate into myotubes showing functional excitation–contraction coupling, with the expression of myosin heavy chain proteins. Our results show that GTP enhances the differentiation of both of these excitable cell lines. The early events in guanosine-based purine signal transduction appear to involve an increase in intracellular Ca2+ levels and membrane hyperpolarization. We further investigated the early activation of extracellular-regulated kinases and phosphoinositide 3-kinase in GTP-stimulated PC12 and C2C12 cells, respectively. We found that GTP promotes the activation of both kinases. Together, our results suggest that, even if there are some differences in the signalling pathways, GTP-induced differentiation in both cell lines is dependent on an increase in intracellular Ca2+
    corecore