160 research outputs found

    Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures

    Get PDF
    Lithium-ion battery performance is intrinsically linked to electrode microstructure. Quantitative measurement of key structural parameters of lithium-ion battery electrode microstructures will enable optimization as well as motivate systematic numerical studies for the improvement of battery performance. With the rapid development of 3-D imaging techniques, quantitative assessment of 3-D microstructures from 2-D image sections by stereological methods appears outmoded; however, in spite of the proliferation of tomographic imaging techniques, it remains significantly easier to obtain two-dimensional (2-D) data sets. In this study, stereological prediction and three-dimensional (3-D) analysis techniques for quantitative assessment of key geometric parameters for characterizing battery electrode microstructures are examined and compared. Lithium-ion battery electrodes were imaged using synchrotron-based X-ray tomographic microscopy. For each electrode sample investigated, stereological analysis was performed on reconstructed 2-D image sections generated from tomographic imaging, whereas direct 3-D analysis was performed on reconstructed image volumes. The analysis showed that geometric parameter estimation using 2-D image sections is bound to be associated with ambiguity and that volume-based 3-D characterization of nonconvex, irregular and interconnected particles can be used to more accurately quantify spatially-dependent parameters, such as tortuosity and pore-phase connectivity

    Topological inversions in coalescing granular media control fluid-flow regimes

    Get PDF
    Sintering—or coalescence—of viscous droplets is an essential process in many natural and industrial scenarios. Current physical models of the dynamics of sintering are limited by the lack of an explicit account of the evolution of microstructural geometry. Here, we use high-speed time-resolved x-ray tomography to image the evolving geometry of a sintering system of viscous droplets, and use lattice Boltzmann simulations of creeping fluid flow through the reconstructed pore space to determine its permeability. We identify and characterize a topological inversion, from spherical droplets in a continuous interstitial gas, to isolated bubbles in a continuous liquid. We find that the topological inversion is associated with a transition in permeability-porosity behavior, from Stokes permeability at high porosity, to percolation theory at low porosity. We use these findings to construct a unified physical description that reconciles previously incompatible models for the evolution of porosity and permeability during sintering

    Three-Fold Diffraction Symmetry in Epitaxial Graphene and the SiC Substrate

    Full text link
    The crystallographic symmetries and spatial distribution of stacking domains in graphene films on SiC have been studied by low energy electron diffraction (LEED) and dark field imaging in a low energy electron microscope (LEEM). We find that the graphene diffraction spots from 2 and 3 atomic layers of graphene have 3-fold symmetry consistent with AB (Bernal) stacking of the layers. On the contrary, graphene diffraction spots from the buffer layer and monolayer graphene have apparent 6-fold symmetry, although the 3-fold nature of the satellite spots indicates a more complex periodicity in the graphene sheets.Comment: An addendum has been added for the arXiv version only, including one figure with five panels. Published paper can be found at http://link.aps.org/doi/10.1103/PhysRevB.80.24140

    TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain

    Get PDF
    Background: The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders. Methods: Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour. Results: We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity. Conclusions: These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response

    Psychometric Evaluation of the HIV Stigma Scale in a Swedish Context

    Get PDF
    Background HIV-related stigma has negative consequences for infected people's lives and is a barrier to HIV prevention. Therefore valid and reliable instruments to measure stigma are needed to enable mapping of HIV stigma. This study aimed to evaluate the psychometric properties of the HIV stigma scale in a Swedish context with regard to construct validity, data quality, and reliability. Methods The HIV stigma scale, developed by Berger, Ferrans, and Lashley (2001), was distributed to a cross-sectional sample of people living with HIV in Sweden (n = 194). The psychometric evaluation included exploratory factor analysis together with an analysis of the distribution of scores, convergent validity by correlations between the HIV stigma scale and measures of emotional well-being, and an analysis of missing items and floor and ceiling effects. Reliability was assessed using Cronbach's α. Results The exploratory factor analysis suggested a four-factor solution, similar to the original scale, with the dimensions personalised stigma, disclosure concerns, negative self-image, and concerns with public attitudes. One item had unacceptably low loadings and was excluded. Correlations between stigma dimensions and emotional well-being were all in the expected direction and ranged between −0.494 and −0.210. The instrument generated data of acceptable quality except for participants who had not disclosed their HIV status to anybody. In line with the original scale, all subscales demonstrated acceptable internal consistency with Cronbach's α 0.87–0.96. Conclusion A 39-item version of the HIV stigma scale used in a Swedish context showed satisfactory construct validity and reliability. Response alternatives are suggested to be slightly revised for items assuming the disclosure of diagnosis to another person. We recommend that people that have not disclosed should skip all questions belonging to the dimension personalised stigma. Our analysis confirmed construct validity of the instrument even without this dimension

    Quantifying Microstructural Evolution in Moving Magma

    Get PDF
    Many of the grand challenges in volcanic and magmatic research are focused on understanding the dynamics of highly heterogeneous systems and the critical conditions that enable magmas to move or eruptions to initiate. From the formation and development of magma reservoirs, through propagation and arrest of magma, to the conditions in the conduit, gas escape, eruption dynamics, and beyond into the environmental impacts of that eruption, we are trying to define how processes occur, their rates and timings, and their causes and consequences. However, we are usually unable to observe the processes directly. Here we give a short synopsis of the new capabilities and highlight the potential insights that in situ observation can provide. We present the XRheo and Pele furnace experimental apparatus and analytical toolkit for the in situ X-ray tomography-based quantification of magmatic microstructural evolution during rheological testing. We present the first 3D data showing the evolving textural heterogeneity within a shearing magma, highlighting the dynamic changes to microstructure that occur from the initiation of shear, and the variability of the microstructural response to that shear as deformation progresses. The particular shear experiments highlighted here focus on the effect of shear on bubble coalescence with a view to shedding light on both magma transport and fragmentation processes. The XRheo system is intended to help us understand the microstructural controls on the complex and non-Newtonian evolution of magma rheology, and is therefore used to elucidate the many mobilization, transport, and eruption phenomena controlled by the rheological evolution of a multi-phase magmatic flows. The detailed, in situ characterization of sample textures presented here therefore represents the opening of a new field for the accurate parameterization of dynamic microstructural control on rheological behavior

    Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes

    Get PDF
    Interleukin-6 (IL-6) has emerged as a potent biomarker for depression as its elevated plasma levels in patients with clinical depression have been confirmed by meta-analyses. Increased plasma IL-6 concentration was associated with various psychological stress factors and physical disorders accompanied by pain. Another modulator of the IL-6 level is rs1800795, a promoter polymorphism in the IL-6 gene which is able to influence its expression rate. Therefore, we examined in a Hungarian population sample of 1053 volunteers with European origins if rs1800795 polymorphism can affect depression symptoms measured by Zung Self-rating Depression Scale (ZSDS), and Brief Symptom Inventory (BSI). We also investigated the interactions of the polymorphism with reported painful physical conditions and Recent Negative Life Events (RLE) measured by the List of Life Threatening Experiences. Rs1800795 significantly interacted with both RLE and painful condition on depressive symptoms measured by ZSDS and BSI using different heritability models, while no main effects of the polymorphism were identified. After correction for multiple testing only the rs1800795 x RLE interaction effect (recessive model) remained significant on the BSI score, while both RLE and painful conditions significantly interacted on the ZSDS. In conclusion, the functional IL-6 rs1800795 polymorphism in interaction with various stress factors increases the risk of depression and has a greater impact on symptoms measured by the ZSDS. Thus, IL-6 and other cytokines may be more relevant in the development of somatic symptoms compared to affective signs of depression, delineating a specific genotype-phenotype relationship in this heterogeneous disorder

    All different or all the same? Exploring the diversity of professional practices in Portuguese school psychology

    Get PDF
    "Published online: 29 March 2016"Studies have generally characterized school psychologists as a relative homogenous population. Understanding the differences in professional practices and related variables is important for the development of the profession. Using a sample of 446 Portuguese school psychologists, this study used cluster analysis to identify distinct profiles of professional activity, based on practitioners’ time distribution among different target audiences (i.e.,students, parents, teachers, school board members, school non-professional staff, and other professionals within the school community). Three distinct profiles emerged from the data: a group highly oriented to work with students, a group that distributes time almost equitably between adults and students, and a group that concentrates attention and professional expertise on adults. Practice setting variables, such as school-psychologists-to-student ratio, schoolpsychologists-to-school ratio, number of referrals per year, and school community level of demand for different activities, were found to be significantly related to cluster membership. No personal- or professional-background-related variables differentiated the three groups. The main implications of these findings are discussed in light of recent literature regarding the models of service delivery for school psychologists

    The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    Get PDF
    BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

    Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

    Get PDF
    International audienceDuring casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements
    • 

    corecore