111 research outputs found
Evidence for the association of the SLC22A4 and SLC22A5 genes with Type 1 Diabetes: a case control study
BACKGROUND: Type 1 diabetes (T1D) is a chronic, autoimmune and multifactorial disease characterized by abnormal metabolism of carbohydrate and fat. Diminished carnitine plasma levels have been previously reported in T1D patients and carnitine increases the sensitivity of the cells to insulin. Polymorphisms in the carnitine transporters, encoded by the SLC22A4 and SLC22A5 genes, have been involved in susceptibility to two other autoimmune diseases, rheumatoid arthritis and Crohn's disease. For these reasons, we investigated for the first time the association with T1D of six single nucleotide polymorphisms (SNPs) mapping to these candidate genes: slc2F2, slc2F11, T306I, L503F, OCTN2-promoter and OCTN2-intron. METHODS: A case-control study was performed in the Spanish population with 295 T1D patients and 508 healthy control subjects. Maximum-likelihood haplotype frequencies were estimated by applying the Expectation-Maximization (EM) algorithm implemented by the Arlequin software. RESULTS: When independently analyzed, one of the tested polymorphisms in the SLC22A4 gene at 1672 showed significant association with T1D in our Spanish cohort. The overall comparison of the inferred haplotypes was significantly different between patients and controls (Ï(2 )= 10.43; p = 0.034) with one of the haplotypes showing a protective effect for T1D (rs3792876/rs1050152/rs2631367/rs274559, CCGA: OR = 0.62 (0.41â0.93); p = 0.02). CONCLUSION: The haplotype distribution in the carnitine transporter locus seems to be significantly different between T1D patients and controls; however, additional studies in independent populations would allow to confirm the role of these genes in T1D risk
The emergence of the brain non-CpG methylation system in vertebrates
Mammalian brains feature exceptionally high levels of non-CpG DNA methylation alongside the canonical form of CpG methylation. Non-CpG methylation plays a critical regulatory role in cognitive function, which is mediated by the binding of MeCP2, the transcriptional regulator that when mutated causes Rett Syndrome. However, it is unclear if the non-CpG neural methylation system is restricted to mammalian species with complex cognitive abilities or has deeper evolutionary origins. To test this, we investigated brain DNA methylation across 12 distant animal lineages, revealing that non-CpG methylation is restricted to vertebrates. We discovered that in vertebrates, non-CpG methylation is enriched within a highly conserved set of developmental genes transcriptionally repressed in adult brains, indicating that it demarcates a deeply conserved regulatory program. Concomitantly, we found that the writer of non-CpG methylation, DNMT3A, and the reader, MeCP2, originated at the onset of vertebrates as a result of the ancestral vertebrate whole genome duplication. Together, we demonstrate how this novel layer of epigenetic information assembled at the root of vertebrates and gained new regulatory roles independent of the ancestral form of the canonical CpG methylation. This suggests the emergence of non-CpG methylation may have fostered the evolution of sophisticated cognitive abilities found in the vertebrate lineage
The little skate genome and the evolutionary emergence of wing-like fins
Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing finsâincluding gene expression, chromatin occupancy and three-dimensional conformationâwe find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait
Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia
BACKGROUND: Bacteraemia is still a major cause of case fatality in all age groups. Our aim was to identify the major underlying conditions constituting risk factors for case fatality in bacteraemia patients. METHODS: The study involved 149 patients (79 male and 70 female) with bacteraemia caused by Staphylococcus aureus (S. aureus) (41 patients), Streptococcus pneumoniae (Str. pneumoniae) (42 patients), ÎČ-hemolytic streptococcae (ÎČ-hml str.) (23 patients) and Eschericia coli (E. coli) (43 patients). Underlying diseases, alcohol and tobacco consumption and body mass index (BMI) were registered. Laboratory findings and clinical data were registered on admission and 6 consecutive days and on day 10â14. Case fatality was studied within 30 days after positive blood culture. Associations between underlying conditions and case fatality were studied in univariate analysis and in a multivariate model. RESULTS: Nineteen patients (12.8%) died of bacteraemia. We found obesity (p = 0.002, RR 9.8; 95% CI 2.3 to 41.3), smoking (p < 0.001, RR 16.9; 95% CI 2.1 to 133.5), alcohol abuse (p = 0.008, RR 3.9; 95% CI 1.3 to 11.28), COPD (p = 0.01, RR 8.4; 95% CI 1.9 to 37.1) and rheumatoid arthritis (p = 0.045, RR 5.9; 95% CI 1.2 to 28.8) to be significantly associated with case fatality in bacteraemia in univariate model. The median BMI was significantly higher among those who died compared to survivors (33 vs. 26, p = 0.003). Obesity and smoking also remained independent risk factors for case fatality when their effect was studied together in a multivariate model adjusted with the effect of alcohol abuse, age (continuos variable), sex and causative organism. CONCLUSION: Our results indicate that obesity and smoking are prominent risk factors for case fatality in bacteraemic patients. Identification of risk factors underlying fatal outcome in bacteraemia may allow targeting of preventive efforts to individuals likely to derive greatest potential benefit
Network metaâanalysis of postâexposure prophylaxis randomized clinical trials
Objectives: We performed a network metaâanalysis of PEP randomized clinical trials to evaluate the best regimen. /
Methods: After MEDLINE/Pubmed search, studies were included if: (1) were randomized, (2) comparing at least 2 PEP threeâdrug regimens and, (3) reported completion rates or discontinuation at 28 days. Five studies with 1105 PEP initiations were included and compared ritonavirâboosted lopinavir (LPV/r) vs. atazanavir (ATV) (one study), cobicistatâboosted elvitegravir (EVG/c) (one study), raltegravir (RAL) (one study) or maraviroc (MVC) (two studies). We estimated the probability of each treatment of being the best based on the evaluation of five outcomes: PEP nonâcompletion at day 28, PEP discontinuation due to adverse events, PEP switching due to any cause, lost to followâup and adverse events. /
Results: Participants were mostly men who have sex with men (n = 832, 75%) with nonâoccupational exposure to HIV (89.86%). Fourâhundred fiftyâfour (41%) participants failed to complete their PEP course for any reason. The Odds Ratio (OR) for PEP nonâcompletion at day 28 in each antiretroviral compared to LPV/r was: ATV 0.95 (95% CI 0.58â1.56; EVG/c: OR 0.65 95% CI 0.30â1.37; RAL: OR 0.68 95% CI 0.41â1.13; and MVC: OR 0.69 95% CI 0.47â1.01. In addition, the rankogram showed that EVG/c had the highest probability of being the best treatment for the lowest rates in PEP nonâcompletion at day 28, switching, lost to followâup or adverse events and MVC for PEP discontinuations due to adverse events. /
Conclusions: Our study shows the advantages of integrase inhibitors when used as PEP, particularly EVG as a SingleâTablet Regimen
Polymorphisms of Pyrimidine Pathway Enzymes Encoding Genes and HLA-B*40â¶01 Carriage in Stavudine-Associated Lipodystrophy in HIV-Infected Patients
Altres ajuts: FundaciĂłn para la InvestigaciĂłn y PrevenciĂłn del SIDA en España (FIPSE 36610, 36572/06); Red de InvestigaciĂłn en SIDA (RIS RD12/0017/0005, RD12/0017/0014).To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40â¶01 carriage with HIV/Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS). Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS) and methylene-tetrahydrofolate reductase (MTHFR) genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP) by a LC-MS/MS assay method. HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53-3.88, P<0.0001). MTHFR gene polymorphisms and HLA-B*40â¶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/10 6 cells, P<0.0001). Independent factors associated with HALS were(OR [95%CI]: (a) Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.): 'A+A'; OR for 'A+B' vs. ref.: 1.39 [0.69-2.80]; OR for 'B+A' vs. ref.: 2.16 [1.22-3.83]; OR for 'B+B' vs. ref.: 3.13, 95%CI: 1.54-6.35), (b) maximum viral load â„5 log10 (OR: 2.55, 95%CI: 1.56-4.14, P = 0.001), (c) use of EFV (1.10 [1.00-1.21], P = 0.008, per year of use). HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40â¶01 carriage in Caucasian patients with long-term exposure to stavudine
Dissecting the Transcriptional Regulatory Properties of Human Chromosome 16 Highly Conserved Non-Coding Regions
Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity. However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome 16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in the central nervous system, although some of them drove expression in other organs such as the eye and the excretory system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-regulatory activity, including enhancer, insulators as well as other not yet discovered functions
X-Linked thrombocytopenia causing mutations in WASP (L46P and A47D) impair T cell chemotaxis
BACKGROUND: Mutation in the Wiskott-Aldrich syndrome Protein (WASP) causes Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN). The majority of missense mutations causing WAS and XLT are found in the WH1 (WASP Homology) domain of WASP, known to mediate interaction with WIP (WASP Interacting Protein) and CIB1 (Calcium and Integrin Binding). RESULTS: We analyzed two WASP missense mutants (L46P and A47D) causing XLT for their effects on T cell chemotaxis. Both mutants, WASP(R)(L46P) and WASP(R)(A47D) (S1-WASP shRNA resistant) expressed well in Jurkat(WASP-KD) T cells (WASP knockdown), however expression of these two mutants did not rescue the chemotaxis defect of Jurkat(WASP-KD) T cells towards SDF-1α. In addition Jurkat(WASP-KD) T cells expressing these two WASP mutants were found to be defective in T cell polarization when stimulated with SDF-1α. WASP exists in a closed conformation in the presence of WIP, however both the mutants (WASP(R)(L46P) and WASP(R)(A47D)) were found to be in an open conformation as determined in the bi-molecular complementation assay. WASP protein undergoes proteolysis upon phosphorylation and this turnover of WASP is critical for T cell migration. Both the WASP mutants were found to be stable and have reduced tyrosine phosphorylation after stimulation with SDF-1α. CONCLUSION: Thus our data suggest that missense mutations WASP(R)(L46P) or WASP(R)(A47D) affect the activity of WASP in T cell chemotaxis probably by affecting the turnover of the protein. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12929-014-0091-1) contains supplementary material, which is available to authorized users
Nutrition and cancer: A review of the evidence for an anti-cancer diet
It has been estimated that 30â40 percent of all cancers can be prevented by lifestyle and dietary measures alone. Obesity, nutrient sparse foods such as concentrated sugars and refined flour products that contribute to impaired glucose metabolism (which leads to diabetes), low fiber intake, consumption of red meat, and imbalance of omega 3 and omega 6 fats all contribute to excess cancer risk. Intake of flax seed, especially its lignan fraction, and abundant portions of fruits and vegetables will lower cancer risk. Allium and cruciferous vegetables are especially beneficial, with broccoli sprouts being the densest source of sulforophane. Protective elements in a cancer prevention diet include selenium, folic acid, vitamin B-12, vitamin D, chlorophyll, and antioxidants such as the carotenoids (α-carotene, ÎČ-carotene, lycopene, lutein, cryptoxanthin). Ascorbic acid has limited benefits orally, but could be very beneficial intravenously. Supplementary use of oral digestive enzymes and probiotics also has merit as anticancer dietary measures. When a diet is compiled according to the guidelines here it is likely that there would be at least a 60â70 percent decrease in breast, colorectal, and prostate cancers, and even a 40â50 percent decrease in lung cancer, along with similar reductions in cancers at other sites. Such a diet would be conducive to preventing cancer and would favor recovery from cancer as well
- âŠ