585 research outputs found

    Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.

    Get PDF
    This is the author accepted manuscript. The final version is available from American Physiological Society via the DOI in this record.The lactate or gas exchange threshold (GET) and the critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven males performed a ramp incremental exercise test, 4-5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; GET) CWR test until Tlim, and a moderate-intensity (MOD; 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (~2-14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared to HVY, and also following SEV and HVY compared to MOD (all P0.05). Neural drive to the VL increased during SEV (4±4%; P0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K(+)]) (P<0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed

    An experimental study of combining evolutionary algorithms with KD-tree to solving dynamic optimisation problems

    Get PDF
    This paper studies the idea of separating the explored and unexplored regions in the search space to improve change detection and optima tracking. When an optimum is found, a simple sampling technique is used to estimate the basin of attraction of that optimum. This estimated basin is marked as an area already explored. Using a special tree-based data structure named KD-Tree to divide the search space, all explored areas can be separated from unexplored areas. Given such a division, the algorithm can focus more on searching for unexplored areas, spending only minimal resource on monitoring explored areas to detect changes in explored regions. The experiments show that the proposed algorithm has competitive performance, especially when change detection is taken into account in the optimisation process. The new algorithm was proved to have less computational complexity in term of identifying the appropriate sub-population/region for each individual. We also carry out investigations to find out why the algorithm performs well. These investigations reveal a positive impact of using the KD-Tree

    Building for the future: essential infrastructure for rodent ageing studies

    Get PDF
    When planning ageing research using rodent models, the logistics of supply, long term housing and infrastructure provision are important factors to take into consideration. These issues need to be prioritised to ensure they meet the requirements of experiments which potentially will not be completed for several years. Although these issues are not unique to this discipline, the longevity of experiments and indeed the animals, requires a high level of consistency and sustainability to be maintained throughout lengthy periods of time. Moreover, the need to access aged stock or material for more immediate experiments poses many issues for the completion of pilot studies and/or short term intervention studies on older models. In this article, we highlight the increasing demand for ageing research, the resources and infrastructure involved, and the need for large-scale collaborative programmes to advance studies in both a timely and a cost-effective way

    Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains.

    Get PDF
    Lactate or gas exchange threshold (GET) and critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven men performed a ramp incremental exercise test, 4-5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; GET) CWR test until Tlim, and a moderate-intensity (MOD; 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (approximately 2-14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared with HVY, and also following SEV and HVY compared with MOD (all P 0.05). Neural drive to the VL increased during SEV (4 ± 4%; P 0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K(+)]) (P < 0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed.NEW & NOTEWORTHY The gas exchange threshold and the critical power demarcate discrete exercise intensity domains. For the first time, we show that the limit of tolerance during whole-body exercise within these domains is characterized by distinct metabolic and neuromuscular responses. Fatigue development during exercise greater than critical power is associated with the attainment of consistent "limiting" values of muscle metabolites, whereas substrate availability and limitations to muscle activation may constrain performance at lower intensities

    Cognitive dysfunction in naturally occurring canine idiopathic epilepsy

    Get PDF
    Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ≥50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments

    Omura’s whales (Balaenoptera omurai) off northwest Madagascar: ecology, behaviour and conservation needs

    Get PDF
    The Omura’s whale (Balaenoptera omurai) was described as a new species in 2003 and then soon after as an ancient lineage basal to a Bryde’s/sei whale clade. Currently known only from whaling and stranding specimens primarily from the western Pacific and eastern Indian Oceans, there exist no confirmed field observations or ecological/behavioural data. Here we present, to our knowledge, the first genetically confirmed documentation of living Omura’s whales including descriptions of basic ecology and behaviour from northwestern Madagascar. Species identification was confirmed through molecular phylogenetic analyses of biopsies collected from 18 adult animals. All individuals shared a single haplotype in a 402 bp sequence of mtDNA control region, suggesting low diversity and a potentially small population. Sightings of 44 groups indicated preference for shallow-water shelf habitat with sea surface temperature between 27.4°C and 30.2°C. Frequent observations were made of lunge feeding, possibly on zooplankton. Observations of four mothers with young calves, and recordings of a song-like vocalization probably indicate reproductive behaviour. Social organization consisted of loose aggregations of predominantly unassociated single individuals spatially and temporally clustered. Photographic recapture of a female re-sighted the following year with a young calf suggests site fidelity or a resident population. Our results demonstrate that the species is a tropical whale without segregation of feeding and breeding habitat, and is probably non-migratory; our data extend the range of this poorly studied whale into the western Indian Ocean. Exclusive range restriction to tropical waters is rare among baleen whale species, except for the various forms of Bryde’s whales and Omura’s whales. Thus, the discovery of a tractable population of Omura’s whales in the tropics presents an opportunity for understanding the ecological factors driving potential convergence of life-history patterns with the distantly related Bryde’s whales
    • …
    corecore