258 research outputs found
Etoricoxib-induced life-threatening hyperkalemia and acute kidney dysfunction against the background of telmisartan and a low sodium diet
Drug-induced hyperkalemia is not uncommon and may be life-threatening when presenting acutely in the emergency department. We present a case of severe hyperkalemia precipitated acutely by etoricoxib in a patient who was on telmisartan and a low sodium (potassium chloride-rich) diet. A 75-year-old male with a past medical history of well-controlled diabetes and hypertension was prescribed etoricoxib (90 mg daily) for 3 days for musculoskeletal backache. He had been taking his routine medications including telmisartan and a potassium-rich salt substitute for many years, without any recent change in dosage or quantity. There was evidence of microalbuminurea; however, the renal functions and electrolytes prior to starting etoricoxib were normal. He presented to the emergency department with signs and symptoms of life-threatening hyperkalemia (serum potassium 7.7 mEq/dl), accelerated hypertension, congestive heart failure, pulmonary edema and acute renal failure. Acute medical management and withholding all drugs that could cause hyperkalemia improved his serum potassium levels over 24 h and renal parameters within 5 days. All the other drugs except etoricoxib were restarted under observation over 8 weeks with no recurrence of the acute episode. Non-steroidal analgesics and other COX-2 inhibitors (rofecoxib and celecoxib) have been known to precipitate renal failure and hyperkalemia specially in patients at risk for the same; although not unexpected, this may be the first reported case of life-threatening hyperkalemia precipitated by etoricoxib in a previously stable patient having increased risk of renal failure and hyperkalemia
Combination antiretroviral drugs in PLGA nanoparticle for HIV-1
<p>Abstract</p> <p>Background</p> <p>Combination antiretroviral (AR) therapy continues to be the mainstay for HIV treatment. However, antiretroviral drug nonadherence can lead to the development of resistance and treatment failure. We have designed nanoparticles (NP) that contain three AR drugs and characterized the size, shape, and surface charge. Additionally, we investigated the <it>in vitro </it>release of the AR drugs from the NP using peripheral blood mononuclear cells (PBMCs).</p> <p>Methods</p> <p>Poly-(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) containing ritonavir (RTV), lopinavir (LPV), and efavirenz (EFV) were fabricated using multiple emulsion-solvent evaporation procedure. The nanoparticles were characterized by electron microscopy and zeta potential for size, shape, and charge. The intracellular concentration of AR drugs was determined over 28 days from NPs incubated with PBMCs. Macrophages were imaged by fluorescent microscopy and flow cytometry after incubation with fluorescent NPs. Finally, macrophage cytotoxicity was determined by MTT assay.</p> <p>Results</p> <p>Nanoparticle size averaged 262 ± 83.9 nm and zeta potential -11.4 ± 2.4. AR loading averaged 4% (w/v). Antiretroviral drug levels were determined in PBMCs after 100 μg of NP in 75 μL PBS was added to media. Intracellular peak AR levels from NPs (day 4) were RTV 2.5 ± 1.1; LPV 4.1 ± 2.0; and EFV 10.6 ± 2.7 μg and continued until day 28 (all AR ≥ 0.9 μg). Free drugs (25 μg of each drug in 25 μL ethanol) added to PBMCs served as control were eliminated by 2 days. Fluorescence microscopy and flow cytometry demonstrated phagocytosis of NP into monocytes-derived macrophages (MDMs). Cellular MTT assay performed on MDMs demonstrated that NPs are not significantly cytotoxic.</p> <p>Conclusion</p> <p>These results demonstrated AR NPs could be fabricated containing three antiretroviral drugs (RTV, LPV, EFV). Sustained release of AR from PLGA NP show high drug levels in PBMCs until day 28 without cytotoxicity.</p
Identification of gene modules associated with low temperatures response in Bambara groundnut by network-based analysis
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising underutilized crop with good seed nutritional values. Low temperature stress in a number of African countries at night, such as Botswana, can effect the growth and development of bambara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed a computational pipeline to identify and analyze the genes and gene modules associated with low temperature stress responses in bambara groundnut using the cross-species microarray technique (as bambara groundnut has no microarray chip) coupled with network-based analysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01) under the sub-optimal (23°C) and very sub-optimal (18°C) temperatures, respectively, of which 110 genes are commonly shared between the two stress conditions. The construction of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 gene modules in sub-optimal and very sub-optimal temperature stresses being identified, respectively. Modules of sub-optimal temperature stress are principally enriched with carbohydrate and lipid metabolic processes, while most of the modules of very sub-optimal temperature stress are significantly enriched with responses to stimuli and various metabolic processes. Several transcription factors (from MYB, NAC, WRKY, WHIRLY & GATA classes) that may regulate the downstream genes involved in response to stimulus in order for the plant to withstand very sub-optimal temperature stress were highlighted. The identified gene modules could be useful in breeding for low-temperature stress tolerant bambara groundnut varieties
A Systematic Analysis of Eluted Fraction of Plasma Post Immunoaffinity Depletion: Implications in Biomarker Discovery
Plasma is the most easily accessible source for biomarker discovery in clinical proteomics. However, identifying potential biomarkers from plasma is a challenge given the large dynamic range of proteins. The potential biomarkers in plasma are generally present at very low abundance levels and hence identification of these low abundance proteins necessitates the depletion of highly abundant proteins. Sample pre-fractionation using immuno-depletion of high abundance proteins using multi-affinity removal system (MARS) has been a popular method to deplete multiple high abundance proteins. However, depletion of these abundant proteins can result in concomitant removal of low abundant proteins. Although there are some reports suggesting the removal of non-targeted proteins, the predominant view is that number of such proteins is small. In this study, we identified proteins that are removed along with the targeted high abundant proteins. Three plasma samples were depleted using each of the three MARS (Hu-6, Hu-14 and Proteoprep 20) cartridges. The affinity bound fractions were subjected to gelC-MS using an LTQ-Orbitrap instrument. Using four database search algorithms including MassWiz (developed in house), we selected the peptides identified at <1% FDR. Peptides identified by at least two algorithms were selected for protein identification. After this rigorous bioinformatics analysis, we identified 101 proteins with high confidence. Thus, we believe that for biomarker discovery and proper quantitation of proteins, it might be better to study both bound and depleted fractions from any MARS depleted plasma sample
Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart
Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca2+) and 3′-5′-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca2+ and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects
Estimating the Global Clinical Burden of Plasmodium falciparum Malaria in 2007
Simon Hay and colleagues derive contemporary estimates of the global clinical burden of Plasmodium falciparum malaria (the deadliest form of malaria) using cartography-based techniques
Specific Cell Targeting Therapy Bypasses Drug Resistance Mechanisms in African Trypanosomiasis
African trypanosomiasis is a deadly neglected disease caused by the extracellular parasite Trypanosoma brucei. Current therapies are characterized by high drug toxicity and increasing drug resistance mainly associated with loss-of-function mutations in the transporters involved in drug import. The introduction of new antiparasitic drugs into therapeutic use is a slow and expensive process. In contrast, specific targeting of existing drugs could represent a more rapid and cost-effective approach for neglected disease treatment, impacting through reduced systemic toxicity and circumventing resistance acquired through impaired compound uptake. We have generated nanoparticles of chitosan loaded with the trypanocidal drug pentamidine and coated by a single domain nanobody that specifically targets the surface of African trypanosomes. Once loaded into this nanocarrier, pentamidine enters trypanosomes through endocytosis instead of via classical cell surface transporters. The curative dose of pentamidine-loaded nanobody-chitosan nanoparticles was 100-fold lower than pentamidine alone in a murine model of acute African trypanosomiasis. Crucially, this new formulation displayed undiminished in vitro and in vivo activity against a trypanosome cell line resistant to pentamidine as a result of mutations in the surface transporter aquaglyceroporin 2. We conclude that this new drug delivery system increases drug efficacy and has the ability to overcome resistance to some anti-protozoal drugs.JAGS was funded by the European Union, grant FP7-HEALTH-2007-B-2.3.4-1.223048, NANOTRYP and Ministerio de Economía y Competitividad, Spain Plan Nacional de Investigación grant SAF2011- 30528. JLA was funded by Instituto de Salud Carlos III, Spain, grant FIS. 11/02571. HPdK was supported by a grant from the Medical Research Council (84733)
Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology
Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
- …