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Abstract

Bambara groundnut (Vigna subterranea (L.) Verdc.) is an African legume and is a promising

underutilized crop with good seed nutritional values. Low temperature stress in a number of

African countries at night, such as Botswana, can effect the growth and development of bam-

bara groundnut, leading to losses in potential crop yield. Therefore, in this study we developed

a computational pipeline to identify and analyze the genes and genemodules associated with

low temperature stress responses in bambara groundnut using the cross-species microarray

technique (as bambara groundnut has nomicroarray chip) coupled with network-based anal-

ysis. Analyses of the bambara groundnut transcriptome using cross-species gene expression

data resulted in the identification of 375 and 659 differentially expressed genes (p<0.01)

under the sub-optimal (23° C) and very sub-optimal (18° C) temperatures, respectively, of

which 110 genes are commonly shared between the two stress conditions. The construction

of a Highest Reciprocal Rank-based gene co-expression network, followed by its partition

using a Heuristic Cluster Chiseling Algorithm resulted in 6 and 7 genemodules in sub-optimal

and very sub-optimal temperature stresses being identified, respectively. Modules of sub-opti-

mal temperature stress are principally enriched with carbohydrate and lipid metabolic pro-

cesses, while most of the modules of very sub-optimal temperature stress are significantly

enriched with responses to stimuli and various metabolic processes. Several transcription

factors (fromMYB, NAC,WRKY,WHIRLY &GATA classes) that may regulate the down-

stream genes involved in response to stimulus in order for the plant to withstand very sub-opti-

mal temperature stress were highlighted. The identified genemodules could be useful in

breeding for low-temperature stress tolerant bambara groundnut varieties.
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Introduction

Bambara groundnut (Vigna subterranea (L.) Verdc, 2n = 2x = 22) is a nutritionally rich, under-

utilised, indigenous African legume crop and mainly grown for its protein rich seed. This crop

continues to be the third most important food legume crop after groundnut and cowpea in

semi-arid Africa [1, 2]. Due to its good seed nutritional values, particularly for the protein com-

ponent in developing country diets, bambara groundnut has been receiving increased interest

and could undergo a shift from subsistence crop to a cash crop i.e., bambara groundnut has

been canned at a commercial level [3]. The remarkable feature of this crop is that it can pro-

duce yield in soils which are too poor for cultivation of other crops like groundnut (Arachis

hypogaea) or where drought stress is too extreme [4].

Low temperature (LT) can be a major abiotic stress, particularly in non-equatorial regions

of Africa and elevated planes. LT stress can limit the growth and development of the crop, lead-

ing to the loss of potential yield, with the limited reports for bambara groundnut suggesting

base temperatures (below which no growth and development occurs) of 12–13°C. Similar to

other crops [5,6], the growth and productivity of bambara groundnut is also effected by LT

stress in a number of ways, such as delays in the germination of seeds, a reduction in total dry

matter accumulated (TDM), reduced shelling percentage and reduced pod and seed yields.

Usually the optimum temperature (T0) for bambara groundnut ranges from 20–28°C [4, 7].

Thus, the low temperatures restrict the times of the year when the farmers can plant seed, par-

ticularly where the temperature at night is below the T0. However, while landraces which are

grown within such stressed environments have been indirectly selected by growth in the target

environment, any cold tolerance present may not be optimised and without an understanding

of the trait, it may be difficult to introduce new genetic variation from other environments into

the target environment. Despite its importance as a promising food and economically valuable

crop, bambara groundnut is mainly cultivated as landraces and there is a need to develop bam-

bara groundnut varieties which are tolerant to low temperature stress, which could further

improve the options for growth and productivity of this drought tolerant legume as part of sus-

tainable low input agriculture.

The advancement of molecular technologies and high-throughput “omics” tools such as

microarrays and deep-sequencing studies have become a useful strategy for the global analysis

of plant gene expression under a particular biotic and/or abiotic stress condition. Using micro-

arrays, the abiotic stress responses in Arabidopsis thaliana [8], Oryza sativa [9], Glycine max

[10], Solanum lycopersicum [11] and in other plants have been widely analyzed and several

stress responsive genes have been identified, although these genes have yet to be evaluated in

field crop situations. Unfortunately, commercial microarray chips are not available for under-

utilized and understudied minor crops like bambara groundnut and alternatives such as com-

prehensive RNA sequencing—while becoming more affordable—can still be costly, prohibiting

routine large-scale experiments. One possible solution for this problem is a cross-species

(Xspecies) microarray approach [12], involving the hybridisation between the cRNA of the

species of interest and a closely related species for which a custom microarray chip is available.

This approach has been successfully used to study the transcriptomes of different important

crops [13–15]. However, these microarray analyses may provide less information on gene-gene

functional relationships. To study the gene-gene interrelationships under a particular biological

treatment, such as experiencing biotic and/or abiotic stress conditions, network-based analyses,

such as gene co-expression network analyses, have been popularly used [16–20].

Gene co-expression networks are constructed from expression data generated by using

either microarrays or deep-sequencing (RNA-Seq) methods to provide a global view of gene-

gene interrelationships and can help in the identification of candidate genes as well as the better
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understanding of how the inter-connected genes interplay to carry out specific biological func-

tions under a specific stress condition. In recent years, co-expression networks have been con-

structed for model species, Arabidopsis [16], and for other important food crops such as Oryza

sativa [17], Citrus [18], Glycine max [19], Vitis vinifera [20] and have been provided a global

view of the transcriptional relationships under specific stress conditions. From these gene co-

expression network analyses, a number of candidate genes and gene functional modules have

been identified that are associated with a specific biological process in plants. In addition, sev-

eral web-based databases for plant gene co-expression networks, including LegumeGRN [21],

CoP [22], PLANEX [23], PLEXdb [24] and CressExpress [25], have been developed to enable

the visualization of gene-gene interrelationships, gene-specific expression profiles across stress

conditions and data mining of co-expression networks for plant breeders and biologists.

In the present study we report the use of cRNA from bambara groundnut grown under sub-

optimal and very sub-optimal temperature stresses, hybridized with Affymetrix Soybean's Gen-

eChipTM array to study low temperature responsive candidate genes expression in bambara

groundnut. To further study gene-gene functional relationships and identify the gene func-

tional modules associated with LT, we have constructed a gene co-expression network, fol-

lowed by the partitioning of the co-expression networks to identify LT responsive functional

modules to provide a better understanding of the underlying molecular mechanisms of the LT

response in bambara groundnut.

Materials & Methods

Plant Materials

Three plants of the bambara groundnut genotype ‘S19-3’ were grown in controlled environ-

ment growth rooms at Sutton Bonington Campus, University of Nottingham, under a 12 hour

photoperiod and at a constant temperature of 27°C. Plants were grown in soil columns con-

taining a growing medium of 1 part John Innes 2 compost to 1 part sand, and were watered as

required to main approx. field capacity. A single, fully-expanded leaflet was sampled from each

of the three plants growing at 27°C, snap frozen in liquid nitrogen and stored at -80°C. Plants

were given a further 3 days at 27°C to recover from sampling before being moved to a con-

trolled environment room at 23°C. On the fifth day at 23°C a single fully-expanded leaflet was

sampled and stored, as described above. After 3 further days plants were moved to 18°C, and

then five days later were sampled again.

Genomic DNA and total RNA extraction

Frozen bambara groundnut leaflets were ground to a fine powder, under liquid nitrogen, in a

mortar and pestle. Extraction of genomic DNA was carried using 100 mg ground leaf tissue,

using a DNeasy Plant Mini Kit (Qiagen), according to manufacturer’s directions. The quality

and concentration of DNA was assessed by visualization on agarose gel and by spectrophotom-

etry, using a nanodrop. For extraction of total RNA, 100 mg ground leaf tissue was processed,

as per manufacturer’s instructions, using an RNeasy Plant Mini Kit (Qiagen) and including the

additional DNA digestion step. RNA samples were then run on the Agilent Bioanalyzer to

determine quality and concentration.

Genomic DNA and cRNA hybridization

Genomic DNA from bambara groundnut leaf tissue was labelled with the Bioprime DNA label-

ling system kit and then hybridized with Soybean’s GeneChipTM (Affymetrix) for 16 hours at

45°C using the standard hybridization protocol (Affymetrix) and analysed by scanning. Total

Network-Based Analysis of Bambara Groundnut under Low-Temperature
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RNA (5 μg) from bambara groundnut of optimal, sub-optimal and very sub-optimal tempera-

tures was reverse-transcribed to synthesize double stranded cDNA using the standard protocol

and then the resulting samples were in-vitro transcribed to generate complementary RNAs

(cRNAs) incorporating biotinylated nucleotides using T7 DNA polymerase. Purified cRNA

(15 μg) were heat-treated and then hybridized to the Soybean GeneChipTM (Affymetrix) for 16

hours at 45°C [12]. A triplicate hybridization (biological, from different plants) was used for

each temperature (18°, 23° and 27°C) and all the hybridization data have been submitted to

NCBI’s GEO database (https://www.ncbi.nlm.nih.gov/geo; Acc. No. GSE72255).

Probe selection and Normalization

Probe-pair information from the genomic DNA (gDNA) hybridization file (.cel) were

extracted using a.cel file parser available at https://www.affymetrix.arabidopsis.info/xspecies/,

which generates a customised chip definition file (CDF) compatible with various microarray

data analysis programs, including R/BioConductor[12]. The RNA hybridisation files (.cel)

were loaded into the R environment applying the customized CDF files generated in the previ-

ous step and then were pre-processed using the RMA (Robust Multichip Average) pre-normal-

ization algorithm present in the “affy” package [26].

Identification of differentially expressed genes

Differentially expressed genes were identified based on the baseline data generated under 27°C

(control) in both sub-optimal (23°C) and very sub-optimal temperature (18°C) stresses using a

t-test and corrected by False Discovery Rate (FDR) approach for multiple hypothesis testing

[27]. Average signal intensities of all biological replicates for each sample were used to calculate

the fold-change of gene expression.

RNA-seq data based expression profiling of DE genes

Unpublished SOLiD4 reads were generated from the same RNA samples as the microarray

data and have been submitted to NCBI’s GEO database (https://www.ncbi.nlm.nih.gov/geo;

Acc. No. GSE75982). Reads which were at least 50bp in length, were aligned to an unpublished

transcriptome assembly of Bambara groundnut using LifeScope version 2.5.1 [28] and read

counts were extracted from the alignment file. DESeq package version 1.22.0 [29] were used to

identify the differentially expressed genes. Further, the expression patterns of DE genes identi-

fied from RNA-seq data were matched with the DE genes identified from microarray data via

BLASTN [30] searching of bambara groundnut’s unpublished transcriptome sequences against

the Soybean GeneChip design sequences with default parameters. The matched differentially

expressed probes were visualised, based on variance stabilization transformed data, using heat-

maps by heatmap.2 function of R’s gplots package version 2.1 (http://cran.r-projects.org/

package=gplots).

Construction of the co-expression network

Highest-reciprocal rank (HRR) based co-expression network methodology was employed to

further investigate the interactions between the identified DE genes by constructing co-expres-

sion networks for each of the stress conditions. The HRR-based co-expression network were

created using the HRRNetworkCreator tool [31] and then the co-expression networks were

visualized using Cytoscope [32].
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Module detection and Functional enrichment

HCCA [31] was used to detect the modules in the constructed co-expression networks using

default parameters. The GO annotation of the Glycine max genome was downloaded from Soy-

Base (http://www.soybase.org). Significantly enriched Gene Ontology terms for each of the

detected module was carried out by AgriGO Tool [33].

Results

Both soybean and bambara groundnut are phylogenetically related legume crops (around 20

million years divergence since a common ancestor; [34]). Hence in this study we have used

Soybean's GeneChipTM array (Affymetrix) to study the transcriptome of Bambara groundnut

under low temperatures. Further, we have developed a computational pipeline (Fig 1) to iden-

tify the low temperature stress associated genes/gene modules using cross-species based expres-

sion datasets coupled with network-based analysis. The pipeline consists of the following steps:

(1) probe selection using a gDNA hybridization approach, (2) pre-processing of raw expression

data, (3) identification of DE genes, (4) construction of an HRR-based co-expression network,

(5) detection of modules, and (6) detection of biologically relevant modules by GO analysis.

Probe Selection and identification of differentially expressed genes

After hybridizing the genomic DNA of bambara groundnut with the Soybean GeneChipTM

array (Affymetrix), a probe-pair was retained if its perfect-match hybridization intensity value

was greater than the user defined threshold values (ranging from 0 to 500) using a.cel file

parser, which also generated a CDF file for each of the threshold values. These CDF files only

contain the probe-pairs in which the perfect-match (PM) oligonucleotides has a gDNA hybrid-

ization intensity greater than the user defined threshold [12]. Table 1 shows the number of

retained probe pairs and probe-sets for each threshold value for further analysis.

The raw expression intensity values (RNA.cel files) were filtered for low- or non-specific

hybridization using the custom generated CDF files from the previous step and then normal-

ized using the RMA algorithm present in “affy” package of BioConductor in an R environment

[26]. To further reduce the noise in the normalized data, only the probe-sets present (P) in all

the array slides (total 9 slides) were selected. Differentially expressed genes (DEGs) were calcu-

lated for each threshold value (0–500) using a t-test and then corrected by using False Discov-

ery Rates (FDR) for multiple hypothesis testing [27]. To consider a probe-set as differentially

expressed, it should contain<0.01 corrected p-value with a>2 fold-change (either up- or

down-regulated). Based on this criteria, the CDF file of 100 threshold values was considered as

a best threshold value (Table 1) as it returned highest number of DEGs (375 in optimal vs. sub-

optimal temperature and 659 in optimal vs. very sub-optimal temperature). Out of 375 DEGs,

204 genes are up-regulated while 171 genes are down-regulated under the sub-optimal temper-

ature (S1 Table). On the other hand, out of 659 DEGs, 403 genes are up-regulated while 257

genes are down-regulated in the very sub-optimal temperature (S2 Table). There were 110

DEGs which are common between sub-optimal and very sub-optimal temperatures suggesting

that a similar genetic response is likely to underlie the response of bambara groundnut to these

two different temperatures. Out of these 110 common DEGs, 76 genes are up-regulated while

34 genes are down-regulated (S3 Table).

RNA-seq data based expression profiling of DE genes

We have chosen top hundred DE genes (up- and down-regulated) to validate their expression

patterns using unpublished RNA-seq data in three steps: (1) Aligned RNA-seq reads of three
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stress conditions individually to the unpublished transcriptome assembly of bambara ground-

nut using LifeScope version 2.5.1 [28] and read count for each of the isotig were extracted; (2)

Then the count data were load into DESeq [29] and identified DE genes with adjusted p-

value< 0.1; and (3) The top hundred DE genes (up- and down-regulated) of microarray data

were matched against the DE genes obtained from RNA-seq data via BLASTN [30] searching

of isotigs of bambara groundnut’s transcriptome against the Soybean GeneChip design

Fig 1. Flowchart of the pipeline for identification of genemodules associated with low temperature response in bambara groundnut.

doi:10.1371/journal.pone.0148771.g001
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sequences with default parameters which resulted in 52 common DE genes (up- and down-reg-

ulated) between microarray-based top hundred DE genes and RNA-seq data based DE genes

(adjusted p-value<0.1). Finally, the 52 common DE genes were used to generate the heatmap

(S1 Fig and S4 Table) using heatmap.2 function. The heatmap indicates that the 52 DE genes

identified from microarray data were consistent when using either cross-species microarray

approaches or RNA-seq based analysis.

Construction of co-expression networks and detection of functional
modules

We have employed the Highest Reciprocal Rank (HRR) based method to construct the co-

expression networks. In this approach, the calculated Pearson Correlation Coefficient (r) values

were normalized using the highest reciprocal rank i.e., the mutual co-expression relationship

between two genes of interest. This method overcomes the problem of calling biological rela-

tionships between expressed genes at different cut-off r-values [31]. In general, the statistical

significance of the co-expression relationships between two genes of interest may not reflect

the biological relevance [35]. Therefore, we determined HRR value that optimized biological

relevance and found that the 10�HRR� 20 produced biologically relevant networks in both

the stress conditions i.e., HRR = 10 produced 28% and 34% of the nodes disconnected from

networks of sub-optimal and very sub-optimal temperature stress conditions, respectively,

while HRR = 20 decreased this proportion to 0.8% and 0.3% of nodes, respectively. Thus, com-

bining both biological relevance and selecting for the maximum number of nodes connected in

both the networks, we found that HRR = 20 resulted in biologically relevant co-expression net-

works with 4218 edges between 375 nodes (S5 Table) and 7178 edges between 659 nodes (S6

Table) in sub- optimal and very sub-optimal temperatures, respectively.

Responses to any stress are usually organized as relatively separable functional modules of

highly interconnected genes in the co-expression network at a given cut-off. Genes present in

the same functional module are co-expressed across diverse conditions, and thus, functional

consistency among the genes present in the same modules is expected [17, 36, 37]. In this study

we used the Heuristic Cluster Chiseling Algorithm (HCCA) [31], with the number of steps

away from the seed node (n) = 3 and the average cluster size ranging from 40–200 nodes, to

detect biologically related modules and this resulted in 6 (S7 Table) and 7 (S8 Table) modules

in sub-optimal and very sub-optimal temperatures, respectively, ranging in size from 40–200

genes per cluster. Tables 2 & 3 shows the statistics of the detected modules in sub-optimal and

very sub-optimal temperature co-expression networks, respectively.

Table 1. Statistics of retained probes and probe-sets on the Affymetrix Soybean GeneChip array before further analysis. This table contains infor-
mation on the number of probe-pairs and probe-sets retained for further analysis corresponding to each threshold value. The last two columns indicate the
number of identified DEGs under sub-optimal and very sub-optimal temperature stresses compared to the optimal temperature, corresponding to each
threshold value, based on masked probe-sets in the custom.cdf file.

Threshold
values

Number of probes
(complete Soybean chip)

Number of probesets
(complete Soybean chip)

Number of DEGs (Sub-
optimal temperature)

Number of DEGs (Very sub-
optimal temperature)

0 670388 61072 256 513

50 602176 61058 342 612

100 326207 59978 375 659

200 130572 50822 335 592

300 65127 36716 254 372

400 36933 25017 190 238

500 23184 17163 127 192

doi:10.1371/journal.pone.0148771.t001
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Functional enrichment of detected modules

Gene Ontology (GO) annotation is one important steps in network analysis to understand the

biological functions and then the identification of over-represented biological processes can

reveal the functional features of each detected module. To GO annotate, followed by identify-

ing the over-represented GO terms in the detected modules, we carried out a GO enrichment

analysis using the AgriGO tool with the Soybean genome locus annotation of Phytozome as

the reference set [33]. Hypergeometric distribution adjusted by Bonferroni correction for the

testing of multiple hypotheses with an adjusted threshold of p<0.01 and a minimum number

of mapping entries of 10 were used to evaluate the statistical significance of the functional

enrichment within the detected gene modules.

Modules associated with sub-optimal temperature. Functional enrichment analysis

resulted in the significant enrichment of three modules (3rd, 4th & 5th) with GO terms with

the genes present in these modules principally involved in the biological processes of carbohy-

drate and lipid metabolic processes (S9 and S10 Tables). Fig 2 displays mapping of significantly

enriched GO terms on the sub-optimal temperature stress responsive gene co-expression

network.

Module 3 consists of 58 gene nodes and is principally enriched with carbohydrate metabolic

processes (GO:0005975, FDR = 0.0023). There are a total of 12 genes whose functions are asso-

ciated with carbohydrate metabolic processes, which represent nearly 28% of the annotated

genes in the module. Interestingly, 50% of genes in this module are up-regulated by sub-opti-

mal temperature stress, while another 50% of genes are down-regulated. Module 4 consists of

72 gene nodes and is also principally enriched with carbohydrate metabolic processes

(GO:0005975, FDR = 0.00015). There are a total of 15 genes whose functions are associated

Table 3. Summary of the detectedmodules in the very sub-optimal temperature co-expression net-
work. Module column indicates the module number in the network; The Total Genes column indicates the
number of genes present in the module, with direction of gene expression change given in the next two
columns.

Module Total Genes Up-regulated Down-regulated

1 155 93 62

2 185 103 82

3 87 53 34

4 59 37 22

5 86 56 30

6 42 30 12

7 42 27 15

doi:10.1371/journal.pone.0148771.t003

Table 2. Summary of the detected modules in the sub-optimal temperature co-expression network.
Module column indicates the module number in the network; The Total Genes column indicates the number
of genes present in the module, with direction of gene expression change given in the next two columns.

Module Total Genes Up-regulated Down-regulated

1 58 28 30

2 44 21 23

3 58 29 29

4 72 41 31

5 90 54 36

6 53 30 23

doi:10.1371/journal.pone.0148771.t002
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with carbohydrate metabolic processes, which represents nearly 24% of the annotated genes in

the module. Fifty-seven percent of genes are up-regulated in this module and the rest of the

genes are down-regulated by sub-optimal temperature stress. In contrast, module 6 consists of

53 gene nodes and is principally enriched with lipid metabolic process genes (GO:0006629,

FDR = 0.004). There are a total of 10 genes whose functions are associated with lipid metabolic

processes, which represents nearly 24% of the annotated genes in the module. Fifty-seven per-

cent of genes are up-regulated and the rest of the genes are down-regulated by sub-optimal

temperature stress. Overall, 50–57% of genes in all the enriched modules were up-regulated,

while 43–50% of genes are down-regulated by sub-optimal temperature stress, which indicates

Fig 2. Mapping of enriched GO terms on the sub-optimal temperature stress responsive gene co-expression network.Modules 3, 4 and 6 were
significantly enriched with GO terms. The different edge colors indicates different range of HRR values and as follows: Cyan: HRR1-HRR5; Red:
HRR6-HRR10; Green: HRR11-HRR15 and Orange yellow: HRR16-HRR20.

doi:10.1371/journal.pone.0148771.g002
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that the sub-optimal temperature stress has little effect on alteration in expression of genes

associated with various metabolic enzymes of carbohydrate and lipid metabolic processes only.

Modules associated with very sub-optimal temperature. Functional enrichment analysis

revealed that the very sub-optimal temperature stress responsive module genes were mainly

involved in biological processes of various kinds of stress response, photosynthesis and cell and

metabolic processes, including carbohydrate metabolism. In the very sub-optimal temperature

all the detected modules were significantly enriched for GO terms (S11 and S12 Tables). Fig 3

displays mapping of enriched GO terms in the very sub-optimal temperature stress responsive

gene co-expression network. Unlike the sub-optimal temperature stress, the very sub-optimal

temperature stress regulated different kinds of stimulus responses along with cell and meta-

bolic processes, which indicates that the plant responds to the decrease in temperature by alter-

ing more than one biological process in order to survive under unfavourable temperatures. All

the detected modules in very sub-optimal temperature stress are positive regulators for low

temperature stress in bambara groundnut.

Module 1 consists of 155 gene nodes and is enriched with stimulus responses (GO:0050896,

FDR = 0.00039). There are a total of 67 genes whose functions are associated with responses to

stimuli, which represent 54% of the annotated genes in the module. 60% of genes in the module

are up-regulated by the very sub-optimal temperature stress, while rest of the genes are down-

regulated. The presence of the up-regulated heat-shock protein (HSP) gene (Gma.10282.2.

S1_at, Glyma18g01416.1) is indicative among the 67 genes enriched which show upregulation

with the “stimulus response” in this module. In general, HSP genes are induced and secrete

HSPs when there is sudden change in the genotypic expression of various genes triggered by

any kind of stress. HSPs play an essential role as chaperones by assisting the correct folding of

stress-accumulated misfolded proteins enhancing cell and plant survival during low tempera-

ture stress. It has also been reported that these HSP genes are induced in Arabidopsis and other

plant species by low temperature stress [38] and thus this module may be preferentially associ-

ated with very sub-optimal temperature stress response in bambara groundnut.

Module 3 consists of 87 gene nodes and is enriched with abiotic stimulus response genes

(GO:0009628, FDR = 0.0042). There are a total of 22 genes whose functions are associated with

responses to abiotic stimuli, which represents 20% of the annotated genes in the module.

Nearly 61% of genes in the module are up-regulated by the very sub-optimal temperature,

while the rest of the genes are down-regulated. The up-regulated chaperone DnaJ gene is

important among these 22 genes. Recent studies indicates that this gene contributes to mainte-

nance of photosystem-II under chilling stress in tomatoes [39] and therefore, this gene may be

participating in a similar response in bambara groundnut under very sub-optimal temperature.

Module 4 consists of 59 gene nodes and is enriched with responses to stress (GO:0006950,

FDR = 0.0032). There are a total of 22 genes whose functions are associated with stress

responses, which represents 47% of the annotated genes in the module. 63% of genes in the

module are up-regulated, while the rest of the genes are down-regulated by the very sub-opti-

mal temperature stress. This module contains an important up-regulated gene called WD40

repeat gene (Gma.13316.2.S1_a_at, Glyma18g52040.1) which a plays crucial role in diverse

protein-protein interactions by acting as a scaffolding molecules and thus assisting the proper

molecular activity of proteins. In recent studies, these genes show higher expression during a

long duration of cold stress in Setaria italica, indicating the up-regulation of these genes in

bambara groundnut may play a role in correct scaffolding of low temperature stress-accumu-

lated misfolded proteins [40].

Module 5 consists of 86 gene nodes and is also enriched with responses to stress

(GO:0006950, FDR = 0.0019). There are a total of 29 genes whose functions are associated with

stress responses, which represents 46% of the annotated genes in the module. 65% of genes in
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the module are up-regulated, while the rest of the genes are down-regulated by the very sub-

optimal temperature stress.

Module 7 consists of 42 gene nodes and is also enriched with abiotic stimulus response

genes (GO:0009628, FDR = 0.0044). There are a total of 13 genes whose functions are associ-

ated with the abiotic stimulus responses, which represents 37% of the annotated genes in the

Fig 3. Mapping of enriched GO terms onto the very sub-optimal temperature stress responsive gene co-expression network.Modules with different
colours indicates that these modules were significantly enriched with GO terms. The different edge colors indicates different range of HRR values and as
follows: Cyan: HRR1-HRR5; Red: HRR6-HRR10; Green: HRR11-HRR15 and Orange yellow: HRR16-HRR20.

doi:10.1371/journal.pone.0148771.g003
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module. Sixty-five percent% of genes in the module are up-regulated, while rest of the genes

are down-regulated by the very sub-optimal temperature stress.

Transcription factors associated with the very sub-optimal temperature stress. Tran-

scription factors (TFs) play a key role in the biological processes involved in plant growth and

development, biosynthetic pathways and biotic and abiotic stress tolerances by regulating the

downstream target genes. Recent studies have revealed their role in various biological processes

in Glycine max [41, 42], Brassica rapa [43, 44], Brassica oleracia [45], Vitis vinifera [46] and

Setaria italica [47–51]. In this study, we have identified several TFs only in the very sub-opti-

mal temperature stress which may be regulate downstream target genes involved in stimulus

responses contained in the GO term and the details of identified TFs are displayed in Table 4.

Module 1 contains four genes encoding TFs from three families and are MYB16 (Gly-

ma04g33210.1), MYB173 (Glyma17g10250.2), NAC17 (Glyma20g31210.4) and WRKY70

(Glyma18g44560.1). Out of four TFs, three TFs were down-regulated, while one TF is up-regu-

lated by the very sub-optimal temperature stress. MYB173 is down-regulated by the very sub-

optimal temperature stress and had the highest number of node genes connected (S13 Table)

in module 1 (Fig 4A). Previous studies revealed that the MYB family TFs were induced in vari-

ous stress responses and in stress tolerance [43, 49, 52] which indicates that the down-regulated

MYB family TFs in bambara groundnut needs to be induced in order to withstand the decreas-

ing temperature. Module 2 contains two genes encoding TFs from two families and are

GATA9 (Glyma04g08990.1) and MYB118 (Glyma10g05560.1). GATA9 is down-regulated,

while MYB118 is up-regulated by the very sub-optimal temperature stress. GATA9 had the

highest number of intramodular connections (S13 Table) in module 2 (Fig 4B). Previous stud-

ies have revealed that the GATA family TFs were differentially expressed in high temperatures

and drought [53] which indicates that GATA9 is induced in response to the decreasing

temperature.

Similarly, module 3 contains two genes encoding two TFs from different families.

WHIRLY2 (Glyma03g41270.1) and NAC73 (Glyma15g08480.4). Interestingly, both TFs were

up-regulated by the very sub-optimal temperature stress which had the joint highest intramod-

ular connectivity (S13 Table) among identified TFs (Fig 5A and 5B). WHIRLY genes are

known to be an important part of disease resistance mechanisms in Arabidopsis [54] and

induced during salinity stress in Hordeum vulgare [52]. So far hundreds of NAC genes have

been identified in various plants. Studies on NAC genes revealed that these genes regulate salt

and drought tolerance [55, 56]. Interestingly, both WHIRLY2 and NAC73 genes were up-regu-

lated by the very sub-optimal temperature stress which implies that these TFs may have an

Table 4. Details of identified Transcription Factors (TFs). This table contains information for each identified TF with respect to the module number to
which the TF belongs, the corresponding probe-set and gene ID, description of the TF, whether the identified TF is up- or down-regulated, the enriched GO
term identified by the AgriGO tool and the number of genes connected to each TF.

Module Probeset ID Gene ID Description Regulation Enriched GO Term Intramodular connectivity

1 Gma.4281.1.S1_at Glyma18g44560.1 WRKY70 Down response to stimulus (GO:0050896) 11

1 Gma.593.2.S1_a_at Glyma17g10250.2 MYB173 Down response to stimulus (GO:0050896) 15

1 GmaAffx.36677.1.S1_at Glyma04g33210.1 MYB16 Down response to stimulus (GO:0050896) 14

1 Gma.4324.3.S1_a_at Glyma20g31210.4 NAC17 Up response to stimulus (GO:0050896) 5

2 GmaAffx.32030.1.A1_at Glyma04g08990.1 GATA9 Down response to stimulus (GO:0050896) 14

2 GmaAffx.20956.1.S1_at Glyma10g05560.1 MYB118 Up response to stimulus (GO:0050896) 13

3 Gma.13676.1.A1_at Glyma03g41270.1 WHIRLY2 Up response to stimulus (GO:0050896) 18

3 GmaAffx.50811.2.S1_at Glyma15g08480.4 NAC73 Up response to stimulus (GO:0050896) 18

7 GmaAffx.16512.1.S1_at Glyma13g09010.1 MYB25 Up response to stimulus (GO:0050896) 9

doi:10.1371/journal.pone.0148771.t004
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important role in raising low temperature tolerance by inducing genes associated with cold

stimulus response in bambara groundnut. Module 3 is the only module that contains

Fig 4. Co-expression relationships of MYB173 and GATA9 transcription factors with their related genes: [A] Shows the co-expression relationships of
MYB173 with its related genes. [B] Shows the co-expression relationships of GATA9 with its related genes. The numbers on top of edges indicates the
highest reciprocal rank between node genes. The different edge colors indicates different range of HRR values and as follows: Cyan: HRR1-HRR5; Red:
HRR6-HRR10; Green: HRR11-HRR15 and Orange yellow: HRR16-HRR20.

doi:10.1371/journal.pone.0148771.g004

Fig 5. Co-expression relationships of WHIRLY2 and NAC73 genes with their related genes: [A] Shows the co-expression relationships of WHIRLY2
with its related genes. The details of related genes are present in S12 Table. [B] Shows the co-expression relationships of NAC73 with its related genes. The
numbers on top of the edges indicates the highest reciprocal rank between node genes. The different edge colors indicates different range of HRR values
and as follows: Cyan: HRR1-HRR5; Red: HRR6-HRR10; Green: HRR11-HRR15 and Orange yellow: HRR16-HRR20.

doi:10.1371/journal.pone.0148771.g005
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up-regulated TFs indicating that this module may be significantly associated with the very sub-

optimal temperature stress. Further investigation is required to confirm whether these two TFs

are involved in raising the very sub-optimal temperature stress tolerance in bambara ground-

nut. Finally, there is only one gene encoding a TF in module 7 (MYB25 Glyma13g09010.1)

which is up-regulated by the very sub-optimal temperature stress, consistent with the results of

previous studies [43, 52].

Discussion

Despite being nutritionally rich, bambara groundnut is still cultivated mainly as landraces.

Bambara groundnut is well adapted to drought conditions. In contrast, low temperature stress

(<T0) causes loss of potential yield in bambara groundnut in a similar way to other crops by

limiting growth and development [5, 6] and hence restricts farmers’ option for growing the

crop, particularly where the temperature is close to T0. Hence, the development of low-temper-

ature stress tolerant Bambara groundnut varieties is important in order to provide more

options for farmers.

So far most of the existing studies used either array based or sequence based methods to

identify stress responsive candidate genes of crops under different kind of stresses [16–19]. But

for bambara groundnut so far there is no chip is available and deep sequencing based methods

are still expensive and hence we have used a heterologous microarray (Soybean Affymetrix

GeneChipTM) coupled with network-based analysis to identify the genes and gene modules

associated with low temperatures (230 and 180 C) in bambara groundnut. In this study, we

developed a computational approach (Fig 1) to identify the genes and gene modules signifi-

cantly associated with the low temperature stress in bambara groundnut and which can be

used to identify the genes and gene modules associated within any particular crop.

In this study, we identified 375 and 659 genes which are differentially expressed in the sub-

optimal and the very sub-optimal temperature stresses respectively, 110 of which are com-

monly shared between stress levels. On average, 41% of annotated genes present in five func-

tional modules of the very sub-optimal temperature stress were significantly enriched with

‘response to stimuli’, ‘response to abiotic stimuli’ and ‘stress response’, genes while none of the

modules of the sub-optimal temperature stress treatment were significantly enriched for any

stress-related biological process. Among all the annotated genes present in various modules of

very sub-optimal temperature stress, there are several important genes which are up-regulated

by very sub-optimal temperature stress condition including, HSP, Chaperone DnaJ and WD40

repeat genes. These genes mainly play crucial roles in correct folding of low-temperature

stress-accumulated misfolded proteins in order to withstand low-temperatures. Functional

annotation of the detected modules identified nine transcription factors (TF) belonging to five

transcription factor families in the very sub-optimal temperature stress only (MYB, NAC,

WRKY, WHIRLY and GATA). These TFs have already been shown to be significantly associ-

ated with various abiotic stresses in various crops [43, 52–56] and therefore, these TFs may reg-

ulate downstream target genes involved in various stress responses related to biological

processes in bambara groundnut. The identified gene modules and genes could be useful in

developing in low-temperature stress tolerant bambara groundnut varieties, via analysis of the

existing genetic diversity available within bambara groundnut, through germplasm collections,

such as those held at the International Institute for Tropical Agriculture in Nigeria.
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