19 research outputs found
Tropospheric emissions: Monitoring of pollution (TEMPO)
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1kmN/S x 4.4 kmE/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial foot print resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.
TEMPO takes advantage of a commercial GEO host space craft to provide a modest cost mission that measures the spectra required to retrieve ozone(O3), nitrogen dioxide(NO2), sulfur dioxide(SO2), formaldehyde(H2CO), glyoxal (C2H2O2), bromine monoxide(BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation,and foliage properties. TEMPO thus measures the major elements,directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lower most troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real- time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments
Climate change and apocalyptic faith
For at least as long as the birth of environmentalism, discourses of ecological crisis have adopted, both consciously and unconsciously, themes and concepts derived from Jewish and Christian Apocalypses. These are ancient texts remembered best for their cosmic and spiritual revelations about the world and the world to come. The scope and methods of this adoption have varied widely: from symbolic representation (images of the Four Horsemen, for instance) to the influence of end-time belief upon environmental policy. More recently, references to apocalypse have accompanied the study of climate change specifically. However, they have tended to do so without more than a superficial engagement with the theological and philosophical underpinnings of apocalyptic faith. This review article addresses this issue by engaging the meanings of apocalyptic faith within four distinct areas in the interdisciplinary study of climate change: (1) Christian ecotheology; (2) critical and social scientific discourse; (3) policy and media communications; and (4) contemporary philosophy and ethics
Expectations for methodology and translation of animal research: a survey of health care workers
BACKGROUND: Health care workers (HCW) often perform, promote, and advocate use of public funds for animal research (AR); therefore, an awareness of the empirical costs and benefits of animal research is an important issue for HCW. We aim to determine what health-care-workers consider should be acceptable standards of AR methodology and translation rate to humans. METHODS: After development and validation, an e-mail survey was sent to all pediatricians and pediatric intensive care unit nurses and respiratory-therapists (RTs) affiliated with a Canadian University. We presented questions about demographics, methodology of AR, and expectations from AR. Responses of pediatricians and nurses/RTs were compared using Chi-square, with P < .05 considered significant. RESULTS: Response rate was 44/114(39%) (pediatricians), and 69/120 (58%) (nurses/RTs). Asked about methodological quality, most respondents expect that: AR is done to high quality; costs and difficulty are not acceptable justifications for low quality; findings should be reproducible between laboratories and strains of the same species; and guidelines for AR funded with public money should be consistent with these expectations. Asked about benefits of AR, most thought that there are sometimes/often large benefits to humans from AR, and disagreed that “AR rarely produces benefit to humans.” Asked about expectations of translation to humans (of toxicity, carcinogenicity, teratogenicity, and treatment findings), most: expect translation >40% of the time; thought that misleading AR results should occur <21% of the time; and that if translation was to occur <20% of the time, they would be less supportive of AR. There were few differences between pediatricians and nurses/RTs. CONCLUSIONS: HCW have high expectations for the methodological quality of, and the translation rate to humans of findings from AR. These expectations are higher than the empirical data show having been achieved. Unless these areas of AR significantly improve, HCW support of AR may be tenuous