68 research outputs found

    Increased risk of phosphorus limitation at higher temperatures for Daphnia magna

    Get PDF
    Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125–790), and at different temperatures (10–25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures

    Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment

    Get PDF
    Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) is assumed to be a syntrophic process, in which methanotrophic archaea produce an interspecies electron carrier (IEC), which is subsequently utilized by sulfate-reducing bacteria. In this paper, six methanogenic substrates are tested as candidate-IECs by assessing their effect on AOM and SR by an anaerobic methanotrophic enrichment. The presence of acetate, formate or hydrogen enhanced SR, but did not inhibit AOM, nor did these substrates trigger methanogenesis. Carbon monoxide also enhanced SR but slightly inhibited AOM. Methanol did not enhance SR nor did it inhibit AOM, and methanethiol inhibited both SR and AOM completely. Subsequently, it was calculated at which candidate-IEC concentrations no more Gibbs free energy can be conserved from their production from methane at the applied conditions. These concentrations were at least 1,000 times lower can the final candidate-IEC concentration in the bulk liquid. Therefore, the tested candidate-IECs could not have been produced from methane during the incubations. Hence, acetate, formate, methanol, carbon monoxide, and hydrogen can be excluded as sole IEC in AOM coupled to SR. Methanethiol did inhibit AOM and can therefore not be excluded as IEC by this study

    Impacts of chemical gradients on microbial community structure

    Get PDF
    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems

    Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire

    Get PDF
    Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα+) antigen-presenting cell subset, whilst SIRPα−CD11R1+ antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα+ antigen-presenting cells as orchestrators of early-life mucosal immune development

    Application of geographic information systems and simulation modelling to dental public health: Where next?

    Get PDF
    Public health research in dentistry has used geographic information systems since the 1960s. Since then, the methods used in the field have matured, moving beyond simple spatial associations to the use of complex spatial statistics and, on occasions, simulation modelling. Many analyses are often descriptive in nature; however, and the use of more advanced spatial simulation methods within dental public health remains rare, despite the potential they offer the field. This review introduces a new approach to geographical analysis of oral health outcomes in neighbourhoods and small area geographies through two novel simulation methods-spatial microsimulation and agent-based modelling. Spatial microsimulation is a population synthesis technique, used to combine survey data with Census population totals to create representative individual-level population datasets, allowing for the use of individual-level data previously unavailable at small spatial scales. Agent-based models are computer simulations capable of capturing interactions and feedback mechanisms, both of which are key to understanding health outcomes. Due to these dynamic and interactive processes, the method has an advantage over traditional statistical techniques such as regression analysis, which often isolate elements from each other when testing for statistical significance. This article discusses the current state of spatial analysis within the dental public health field, before reviewing each of the methods, their applications, as well as their advantages and limitations. Directions and topics for future research are also discussed, before addressing the potential to combine the two methods in order to further utilize their advantages. Overall, this review highlights the promise these methods offer, not just for making methodological advances, but also for adding to our ability to test and better understand theoretical concepts and pathways

    International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci

    Get PDF
    The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5–20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson’s disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations. © 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply
    corecore