2,249 research outputs found

    Direct Detection of Electroweak-Interacting Dark Matter

    Full text link
    Assuming that the lightest neutral component in an SU(2)L gauge multiplet is the main ingredient of dark matter in the universe, we calculate the elastic scattering cross section of the dark matter with nucleon, which is an important quantity for the direct detection experiments. When the dark matter is a real scalar or a Majorana fermion which has only electroweak gauge interactions, the scattering with quarks and gluon are induced through one- and two-loop quantum processes, respectively, and both of them give rise to comparable contributions to the elastic scattering cross section. We evaluate all of the contributions at the leading order and find that there is an accidental cancellation among them. As a result, the spin-independent cross section is found to be O(10^-(46-48)) cm^2, which is far below the current experimental bounds.Comment: 19 pages, 7 figures, published versio

    Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management) : study protocol

    Get PDF
    Background: Chronic congestive heart failure (CHF) is a complex disease with rising prevalence, compromised quality of life (QoL), unplanned hospital admissions, high mortality and therefore high burden of illness. The delivery of care for these patients has been criticized and new strategies addressing crucial domains of care have been shown to be effective on patients' health outcomes, although these trials were conducted in secondary care or in highly organised Health Maintenance Organisations. It remains unclear whether a comprehensive primary care-based case management for the treating general practitioner (GP) can improve patients' QoL. Methods/Design: HICMan is a randomised controlled trial with patients as the unit of randomisation. Aim is to evaluate a structured, standardized and comprehensive complex intervention for patients with CHF in a 12-months follow-up trial. Patients from intervention group receive specific patient leaflets and documentation booklets as well as regular monitoring and screening by a prior trained practice nurse, who gives feedback to the GP upon urgency. Monitoring and screening address aspects of disease-specific selfmanagement, (non)pharmacological adherence and psychosomatic and geriatric comorbidity. GPs are invited to provide a tailored structured counselling 4 times during the trial and receive an additional feedback on pharmacotherapy relevant to prognosis (data of baseline documentation). Patients from control group receive usual care by their GPs, who were introduced to guidelineoriented management and a tailored health counselling concept. Main outcome measurement for patients' QoL is the scale physical functioning of the SF-36 health questionnaire in a 12-month follow-up. Secondary outcomes are the disease specific QoL measured by the Kansas City Cardiomyopathy questionnaire (KCCQ), depression and anxiety disorders (PHQ-9, GAD-7), adherence (EHFScBS and SANA), quality of care measured by an adapted version of the Patient Chronic Illness Assessment of Care questionnaire (PACIC) and NTproBNP. In addition, comprehensive clinical data are collected about health status, comorbidity, medication and health care utilisation. Discussion: As the targeted patient group is mostly cared for and treated by GPs, a comprehensive primary care-based guideline implementation including somatic, psychosomatic and organisational aspects of the delivery of care (HICMAn) is a promising intervention applying proven strategies for optimal care. Trial registration: Current Controlled Trials ISRCTN30822978

    A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells

    Get PDF
    Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid electrolytes which can limit device lifetimes. To increase device efficiency requires optimized dye injection and regeneration, most likely from multiple dyes while replacement of liquid electrolytes requires solid charge transporters (most likely hole transport materials – HTMs). While theoretical and experimental work have both been widely applied to different aspects of DSC research, these approaches are most effective when working in tandem. In this context, this perspective paper considers the key parameters which influence electron transfer processes in DSC devices using one or more dye molecules and how modelling and experimental approaches can work together to optimize electron injection and dye regeneration. This paper provides a perspective that theory and experiment are best used in tandem to study DSC device

    Fundamental Limits on Wavelength, Efficiency and Yield of the Charge Separation Triad

    Get PDF
    In an attempt to optimize a high yield, high efficiency artificial photosynthetic protein we have discovered unique energy and spatial architecture limits which apply to all light-activated photosynthetic systems. We have generated an analytical solution for the time behavior of the core three cofactor charge separation element in photosynthesis, the photosynthetic cofactor triad, and explored the functional consequences of its makeup including its architecture, the reduction potentials of its components, and the absorption energy of the light absorbing primary-donor cofactor. Our primary findings are two: First, that a high efficiency, high yield triad will have an absorption frequency more than twice the reorganization energy of the first electron transfer, and second, that the relative distance of the acceptor and the donor from the primary-donor plays an important role in determining the yields, with the highest efficiency, highest yield architecture having the light absorbing cofactor closest to the acceptor. Surprisingly, despite the increased complexity found in natural solar energy conversion proteins, we find that the construction of this central triad in natural systems matches these predictions. Our analysis thus not only suggests explanations for some aspects of the makeup of natural photosynthetic systems, it also provides specific design criteria necessary to create high efficiency, high yield artificial protein-based triads

    The Integrative Effects of Cognitive Reappraisal on Negative Affect: Associated Changes in Secretory Immunoglobulin A, Unpleasantness and ERP Activity

    Get PDF
    Although the regulatory role of cognitive reappraisal in negative emotional responses is widely recognized, this reappraisal's effect on acute saliva secretory immunoglobulin A (SIgA), as well as the relationships among affective, immunological, and event-related potential (ERP) changes, remains unclear. In this study, we selected only people with low positive coping scores (PCSs) as measured by the Trait Coping Style Questionnaire to avoid confounding by intrinsic coping styles. First, we found that the acute stress of viewing unpleasant pictures consistently decreased SIgA concentration and secretion rate, increased perceptions of unpleasantness and amplitude of late positive potentials (LPPs) between 200–300 ms and 400–1000 ms. After participants used cognitive reappraisal, their SIgA concentration and secretion rate significantly increased and their unpleasantness and LPP amplitudes significantly decreased compared with a control condition. Second, we found a significantly positive correlation between the increases in SIgA and the decreases in unpleasantness and a significantly negative correlation between the increases in SIgA and the increases in LPP across the two groups. This study is the first to demonstrate that cognitive reappraisal reverses the decrease of SIgA. In addition, it revealed strong correlations among affective, SIgA and electrophysiological changes with convergent multilevel evidence

    Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes

    Get PDF
    We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model grants the existence of turbulence at any gradient Richardson number, Ri. Instead of its critical value separating - as usually assumed - the turbulent and the laminar regimes, it reveals a transition interval, 0.1< Ri <1, which separates two regimes of essentially different nature but both turbulent: strong turbulence at Ri<<1; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at Ri>1. Predictions from this model are consistent with available data from atmospheric and lab experiments, direct numerical simulation (DNS) and large-eddy simulation (LES).Comment: 40 pages, 6 figures, Boundary-layer Meteorology, resubmitted, revised versio

    On domain walls in a Ginzburg-Landau non-linear S^2-sigma model

    Get PDF
    The domain wall solutions of a Ginzburg-Landau non-linear S2S^2-sigma hybrid model are unveiled. There are three types of basic topological walls and two types of degenerate families of composite - one topological, the other non-topological- walls. The domain wall solutions are identified as the finite action trajectories (in infinite time) of a related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates. The physical and mathematical features of these domain walls are thoroughly discussed.Comment: 26 pages, 18 figure

    Total hip arthroplasty: what information do we offer patients on websites of hospitals?

    Get PDF
    Contains fulltext : 97468.pdf (publisher's version ) (Open Access)BACKGROUND: Physicians face a new challenge; the self-educated patient. The internet is an important source that patients use to become self-educated. However, the individual choice for best treatment is difficult. The aim of this study was to investigate what kind of information is offered to total hip arthroplasty patients by internet and what information is appreciated by them. METHODS: Websites of orthopedic departments of all hospitals in the Netherlands were evaluated. In addition, a cohort of 102 patients, diagnosed with arthritic joint disorders, filled in an online survey and gave their opinion concerning the importance of this information. RESULTS: Eighty different orthopedic websites of hospitals were identified. Websites presented information regarding the orthopedic staff surgeon (76%) and the postoperative rehabilitation process (66%). They also offered referral to other orthopedic websites (61%), the opportunity to make an outpatient appointment (21%), and the opportunity to submit an online question (15%). Patients rated the presence of information regarding prosthesis survival as very important (>70%). However, the information on the type of prosthesis used by the hospital, and survival data of the prosthesis, were only present in ~9% and 5% respectively, of the websites. CONCLUSIONS: The content of health information on websites of hospitals is highly variable for total hip arthroplasty. Information regarding the hip implant and prosthesis survival is highly appreciated by patients, however, mostly absent on orthopedic websites in the Netherlands. The internet provides an enormous potential for orthopedic surgeons to inform the self-educated patient

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve

    Get PDF
    To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world
    corecore