10 research outputs found

    Muscle Glycogen Utilisation during an Australian Rules Football Game.

    Get PDF
    PURPOSE: To better understand the carbohydrate (CHO) requirement of Australian Football (AF) match play by quantifying muscle glycogen utilisation during an in-season AF match. METHODS: After a 24 h CHO loading protocol of 8 g/kg and 2 g/kg in the pre-match meal, two elite male forward players had biopsies sampled from m. vastus lateralis before and after participation in a South Australian Football League game. Player A (87.2kg) consumed water only during match play whereas player B (87.6kg) consumed 88 g CHO via CHO gels. External load was quantified using global positioning system technology. RESULTS: Player A completed more minutes on the ground (115 vs. 98 min) and covered greater total distance (12.2 vs. 11.2 km) than Player B, though with similar high-speed running (837 vs. 1070 m) and sprinting (135 vs. 138 m), respectively. Muscle glycogen decreased by 66% in Player A (Pre-: 656, Post-: 223 mmol∙kg-1 dw) and 24% in Player B (Pre-: 544, Post-: 416 mmol∙kg-1 dw), respectively. CONCLUSION: Pre-match CHO loading elevated muscle glycogen concentrations (i.e. >500 mmol.kg-1 dw), the magnitude of which appears sufficient to meet the metabolic demands of elite AF match play. The glycogen cost of AF match play may be greater than soccer and rugby and CHO feeding may also spare muscle glycogen use. Further studies using larger sample sizes are now required to quantify the inter-individual variability of glycogen cost of match play (including muscle and fibre-type specific responses) as well examine potential metabolic and ergogenic effects of CHO feeding

    International Society of Sports Nutrition Position Stand: Nutritional recommendations for single-stage ultra-marathon; training and racing

    Get PDF
    Background. In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~60% of energy intake, 5 – 8 g⸱kg−1·d−1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~1.6 g·kg−1·d−1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g⸱kg−1·d−1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150 - 400 kcal⸱h−1 (carbohydrate, 30 – 50 g⸱h−1; protein, 5 – 10 g⸱h−1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450 – 750 mL⸱h−1 (~150 – 250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., >575 mg·L−1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety

    Is alcohol beneficial or harmful for cardioprotection?

    No full text
    While the effects of chronic ethanol consumption on liver have been well studied and documented, its effect on the cardiovascular system is bimodal. Thus, moderate drinking in many population studies is related to lower prevalence of coronary artery disease (CAD). In contrast, heavy drinking correlates with higher prevalence of CAD. In several other studies of cardiovascular mortalities, abstainers and heavy drinkers are at higher risk than light or moderate drinkers. The composite of this disparate relation in several population studies of cardiovascular mortality has been a “U-” or “J-”shaped curve. Apart from its ability to eliminate cholesterol from the intima of the arteries by reverse cholesterol transport, another major mechanism by which HDL may have this cardioprotective property is by virtue of the ability of its component enzyme paraoxonase1 (PON1) to inhibit LDL oxidation and/or inactivate OxLDL. Therefore, PON1 plays a central role in the disposal of OxLDL and thus is antiatherogenic. Furthermore, PON1 is a multifunctional antioxidant enzyme that can also detoxify the homocysteine metabolite, homocysteine thiolactone (HTL), which can pathologically cause protein damage by homocysteinylation of the lysine residues, thereby leading to atherosclerosis. We demonstrated that moderate alcohol up regulates liver PON1 gene expression and serum activity, whereas heavy alcohol consumption had the opposite effects in both animal models and in humans. The increase in PON1 activity in light drinkers was not due to preferential distribution of high PON1 genotype in this group. It is well known that wine consumption in several countries shows a remarkable inverse correlation to local rates of CAD mortality. Significantly, apart from its alcohol content, red wine also has polyphenols such as quercetin and resveratrol that are also known to have cardioprotective effects. We have shown that quercetin also up regulates PON1 gene in rats and in human liver cells. The action of quercetin seems to be mediated via the active form of the nuclear lipogenic transcription factor, sterol-regulatory element-binding protein 2 (SREBP2) that is translocated from endoplasmic reticulum to the nucleus. However, the mechanism of action of ethanol-mediated up-regulation of PON1 gene remains to be elucidated. We conclude that both moderate ethanol and quercetin, the two major components of red wine, exhibit cardioprotective properties via the up-regulation of the antiatherogenic gene PON1

    Skeletal muscle energy metabolism during exercise

    No full text

    ISSN exercise & sports nutrition review update: research & recommendations

    No full text
    corecore