

LJMU Research Online

Routledge, HE, Leckey, JJ, Lee, MJ, Garnham, A, Graham, S, Burgess, D, Burke, LM, Erskine, RM, Close, GL and Morton, JP

Muscle Glycogen Utilisation during an Australian Rules Football Game.

http://researchonline.ljmu.ac.uk/9369/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Routledge, HE, Leckey, JJ, Lee, MJ, Garnham, A, Graham, S, Burgess, D, Burke, LM, Erskine, RM, Close, GL and Morton, JP (2018) Muscle Glycogen Utilisation during an Australian Rules Football Game. International Journal of Sports Physiology and Performance. ISSN 1555-0273

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

1	Muscle Glycogen Utilisation during an Australian Rules Football
2	Game
3	
4	Submission Type: Case-Study
5	
6	
7	Harry E Routledge ^{1,2} , Jill J Leckey ³ , Matt J Lee ⁴ , Andrew Garnham ³ ,
8	Stuart Graham ² , Darren Burgess ² , Louise M Burke ³ , Robert M
9	Erskine ^{1,5} , Graeme L Close ¹ and James P Morton ¹
10	
11	
12	¹ Reserach Institute for Sport and Exercise Sciences
13	Liverpool John Moores University
14	Byrom Street Campus
15	Liverpool
16	
17	
10	UK
19	² Port Adelaide Football Club
20	Allan Scott Headquarters
20	Alberton Oval
21	Rioution Ovar
22	Alberton
23	S A 5014
24	Australia
25	Australia
20	³ Exercise and Nutrition Personal Drogram
27	Mary MacVillon Institute for Health Descende
20	Australian Catholia University
29	Australian Californe University Melbourne
20 21	Vietoria Australia
27	victoria, Australia
22	4 Callerer (Survey and Elemenia Science
33	College of Sport and Exercise Science
34	Victoria University
35	Melbourne
36	Victoria
37	Australia
38	
39	Institute of Sport, Exercise and Health,
40	University College London,
41	London,
42	United Kingdom
43	
44	Address for correspondence:
45	Dr James Morton
46	Research Institute for Sport and Exercise Sciences
47	Liverpool John Moores University
48	Tom Reilly Building
49	Byrom St Campus
50	Liverpool
51	L3 3AF
52	United Kindgdom
53	Email: J.P.Morton@ljmu.ac.uk
54	Tel: +44 151 904 6233
55	

- Running Head: Glycogen use in AF match play
- Abstract Word Count: 248
- **Text Only Word Count:** 1492
- Number of Figures and Tables: 1 Table

106 Abstract

Purpose: To better understand the carbohydrate (CHO)
109 requirement of Australian Football (AF) match play by
110 quantifying muscle glycogen utilisation during an in-season AF
111 match.
112

Methods: After a 24 h CHO loading protocol of 8 g/kg and 2 g/kg in the pre-match meal, two elite male forward players had biopsies sampled from *m. vastus lateralis* before and after participation in a South Australian Football League game. Player A (87.2kg) consumed water only during match play whereas player B (87.6kg) consumed 88 g CHO via CHO gels. External load was quantified using global positioning system technology.

Results: Player A completed more minutes on the ground (115
vs. 98 min) and covered greater total distance (12.2 vs. 11.2
km) than Player B, though with similar high-speed running (837 vs. 1070 m) and sprinting (135 vs. 138 m), respectively.
Muscle glycogen decreased by 66% in Player A (Pre-: 656, Post-: 223 mmol·kg⁻¹ dw) and 24% in Player B (Pre-: 544, Post-: 416 mmol·kg⁻¹ dw), respectively.

Conclusion: Pre-match CHO loading elevated muscle glycogen concentrations (i.e. >500 mmol.kg⁻¹ dw), the magnitude of which appears sufficient to meet the metabolic demands of elite AF match play. The glycogen cost of AF match play may be greater than soccer and rugby and CHO feeding may also spare muscle glycogen use. Further studies using larger sample sizes are now required to quantify the inter-individual variability of glycogen cost of match play (including muscle and fibre-type specific responses) as well examine potential metabolic and ergogenic effects of CHO feeding.

- 142 Keywords: carbohydrate loading, vastus lateralis, AF, high
- 143 speed running

156 Introduction

157

Invasive team sports such as soccer^{1,2}, rugby league² and 158 Australian Football $(AF)^{2,3}$ are characterised by high-intensity 159 (>19.8km.h⁻¹) intermittent activity profiles. Given the duration 160 of activity (i.e. 80-120 minutes) and high-intensity intermittent 161 162 profiles, muscle glycogen is considered as the predominant energy substrate to support the metabolic demands of match 163 play^{4,5}. In relation to soccer, it has been reported that match-164 play in elite Danish soccer players⁵ depletes muscle glycogen 165 concentration by a magnitude of 50% and requires a glycogen 166 cost of approximately 200 mmol·kg⁻¹ dw. We also observed 167 similar absolute glycogen utilisation and relative depletion rates 168 169 English professional rugby league players during in competitive match play⁶. Nonetheless, in the absence of a 170 controlled carbohydrate (CHO) loading protocol, it is 171 noteworthy that pre-match muscle glycogen concentrations in 172 173 team sport athletes may range from 300-600 mmol·kg⁻¹ dw⁷ and that approximately 50% of muscle fibres are classified as 174 empty or partially empty after soccer match play, thus having 175 potential implications for high-intensity physical performance 176 late in the match. Indeed, in relation to physical performance, 177 it was recognised as early as the 1970s⁸ that commencing 178 match play with reduced pre-exercise muscle concentration (i.e. 179 < 200 mmol·kg⁻¹ dw) reduces total distance covered by 25% 180 when compared with higher pre-match muscle glycogen 181 availability (i.e. $> 400 \text{ mmol} \cdot \text{kg}^{-1} \text{ dw}$). 182

183

Given the longer duration and greater proportion of time spent 184 at high-intensity workloads in AF match play^{2,3} versus both 185 soccer^{1,2} and rugby², it could be suggested that the CHO 186 187 requirements for AF players are increased accordingly. Indeed, high velocity running was reported to be significantly greater in 188 189 AF (1322m) versus rugby league (327m) and soccer $(517m)^2$. 190 To the authors' knowledge, however, no researchers have yet quantified the muscle glycogen cost of AF match play in elite 191 players. The aim of the present case-study was to quantify 192 193 glycogen use in *m. vastus lateralis* from two elite male AF 194 players after participation in a South Australian Football 195 League game.

- 196
- 197
- 198 199

200

200 Methods

201 202

202 Subjects 203 Two male forward players from a South Australian Football 204 League (SANFL) list (see Table 1) volunteered to take part in 205 the study. The study was conducted according to the

206 Declaration of Helsinki and was approved by the Human
207 Research Ethics Committee of Australian Catholic University
208 Melbourne.

209

210

211 Design

In a case-study design, muscle biopsies were obtained from *m. vastus lateralis* before and after participation in a competitive
SANFL league game undertaken in August 2017.
Quantification of external loading during match play was
assessed via global positioning system (GPS) technology.

217

218 Dietary Controls. In the day prior to match play, each player consumed a prescribed CHO loading diet providing CHO, 219 220 protein and fat intakes corresponding to 8 g/kg, 2 g/kg and 1 g/kg body mass, respectively, based on contemporary 221 guidelines of Thomas and colleagues⁹. At 4 hours prior to 222 match play, each player also consumed a pre-match meal 223 224 providing 2 g/kg CHO, 0.2 g/kg protein and 0.3 g/kg fat. 225 During match play, players were able to consume fluids and 226 sports foods at opportunities that were both predictable (between quarters) and random (rotation on the bench, access to 227 228 trainer on the ground when the ball is not in play). On such 229 occasions; Player A consumed water only whereas Player B 230 also consumed an additional 88 g of CHO in the form of four 231 isotonic CHO gels (SiS GO Gels, Nelson, UK) consumed at the quarter time breaks (~20-minute intervals during the game). 232

233

234 Muscle Biopsies. Muscle biopsies (100 mg) were sampled 235 from *m. vastus lateralis* at 60 minutes prior to the beginning of 236 the game (i.e. prior to the warm-up period) and within 10 minutes of completion of match play participation. Biopsies 237 238 were obtained under local anesthesia (1% Xylocaine) using a 239 Bergstrom biopsy needle and immediately frozen in liquid nitrogen for later analysis. Approximately 3 mg of freeze-dried 240 241 muscle tissue was powdered and dissected free of all visible 242 non-muscle tissue. Powered muscle tissue was then mixed with 250 µl of 2 M HCl, incubated at 95°C for 2 hours (agitated 243 244 gently every 20 min), and then neutralized with 750µl of 0.66 245 M NaOH. Glycogen concentration was subsequently assayed 246 in triplicate via enzymatic analysis with flurometric detection. Muscle glycogen values were expressed as millimoles per 247 kilograms dry weight (mmol·kg⁻¹ dw). 248

249

GPS Analysis. Both players wore a portable micro-technology
device (Optimeye S5, Catapult Innovations, Melbourne,
Australia) which recorded activity profile data. The portable
device was worn inside a purpose built elastic vest, positioned
across the upper back between the scapula. Each device was
activated 30-minutes prior to the start of the game to allow

256 acquisition of satellite signal and lock (>8 satellites). Satellite 257 data sampled at 10 Hz provided measures of duration, total distance, average speed and distance covered within four 258 259 specific velocity bands corresponding to: jogging $(2-3.9 \text{ m.s}^2)$, running $(4-5.4 \text{ m.s}^2)$, high-speed running $(5.5-6.9 \text{ m.s}^2)$ and 260 sprinting (7 m.s^2) . These speed zones are similar to those 261 previously reported in soccer¹ and allow for direct comparisons 262 between football codes. At the conclusion of the match, data 263 were downloaded and analyzed using (Openfield version 11.12, 264 265 Catapult Innovations).

266

267 **Results**

268

Subject characteristics, external workload, muscle glycogen
utilisation and CHO intake are presented in Table 1. Individual
data are presented for both Player A and B.

- 272
- 273

274 Discussion

275

276 The aim of the present case-study was to quantify muscle 277 glycogen utilisation during AF match play. We studied two 278 elite male AF players during a competitive match from the 279 South Australian Football League. Our data demonstrate that a 280 standardised one day dietary CHO loading protocol of 8 g/kg 281 and 2 g/kg in the pre-match meal elevates muscle glycogen concentration (i.e. >500 mmol.kg⁻¹ dw) to a magnitude that is 282 sufficient to fuel the metabolic demands of AF match play. 283

284

285 In relation to the external loads reported here, we observed similar loading profiles to that previously reported in elite AF 286 match play where larger sample sizes (e.g. 39 players) have 287 been studied³. This is the case for parameters such as total 288 distance, average speed, high-intensity running and sprinting. 289 The between player differences in such parameters are also 290 similar to those previously reported³. Despite only studying two 291 292 forward players, we are confident that the external loads reported here are therefore representative of the customary 293 294 loads experienced in AF match play from a wider sample of 295 teams and players, though we acknowledge that load differences between playing positions are to be expected³. 296

297

298 In accordance with a higher workload, our data suggest that the 299 glycogen cost of AF match play (e.g. Player A utilised 433 mmol.kg⁻¹ dw) may be greater than that reported in soccer^{5,7} 300 and rugby match play⁶ where approximately 200 mmol.kg⁻¹ dw 301 was utilised in both instances. Such differences in absolute 302 303 glycogen cost are likely due to greater duration of activity and time spent in higher intensity threshold zones¹⁰. In contrast to 304 Player A, Player B experienced less total glycogen use (138 305

mmol.kg⁻¹ dw). While such inter-individual variation in 306 glycogen use may be due to differences in total distance 307 covered, duration, pre-match muscle glycogen concentrations¹¹, 308 training status and muscle oxidative capacity¹², it is noteworthy 309 that Player B also consumed an additional 88 g of CHO during 310 match play. As such, differences in glycogen use between 311 312 players may also be due, in part, to a potential muscle glycogen sparing effect of CHO feeding, an effect that has been reported 313 previously in *m. vastus lateralis* during running¹³. Indeed, the 314 315 game characteristics of AF support a more aggressive approach to CHO intake during play than is reported by elite soccer 316 players², with opportunities for fuel replacement during 317 scheduled breaks between quarters and time spent on the 318 319 interchange bench. Nonetheless, we acknowledge that 320 randomised control trials incorporating larger sample sizes are now required to verify any potential metabolic or ergogenic 321 322 effect of CHO feeding during competitive match play. 323 Additionally, glycogen use in specific muscles (e.g. 324 gastrocnemius versus vastus lateralis), muscle fibre types and intra-cellular storage pools could also be quantified using transmission electron microscopy^{14,15}. We also acknowledge 325 326 that the glycogen utilisation observed here is also reflective of 327 328 those activities undertaken during the warm-up period. As such, 329 future studies could also sample biopsies in the minutes prior to 330 match play and at the end of each quarter to further characterise 331 both the total absolute use and rates of glycogen use as the 332 match progresses.

- 333
- 334

336

335 Practical Applications

Pre-match muscle glycogen concentration $> 500 \text{ mmol.kg}^{-1} \text{ dw}$ 337 (as achieved via CHO loading of 8 g/kg) is sufficient to fuel the 338 physical demands of elite forward AF match play. Given the 339 apparently greater muscle glycogen cost of AF match-play 340 341 compared to soccer and rugby, sport physiologists and 342 nutritionists should ensure that AF players consume sufficient 343 dietary CHO intake (likely > 6 g/kg) in the 24 hours prior to 344 participation in match play.

345 346

347 Conclusion

348

We provide novel data by reporting muscle glycogen utilisation in *m. vastus lateralis* from two elite male AF forward players during competitive match play. Our data suggest that total glycogen use is greater than that reported in elite players from other invasive team sports, such as soccer and rugby. Additionally, these data suggest that CHO loading with 8 g/kg body mass is sufficient to meet the metabolic demands of AF match play and that previous suggestions of 10-12 g/kg body (for athletes involved in intermittent exercise > 90 minutes) mass may not be necessary for this population. Further studies are now required to quantify the inter-individual variability of glycogen use as well as examine any potential metabolic and ergogenic effects of CHO feedings during match play.

406		
407		
408 409		References
410	1.	Anderson L, Orme P, Di Michele R, Close GL,
411		Morgans R, Drust B, Morton JP. Quantification of
412		training load during one-, two- and three-game week
413		schedules in professional soccer players from the
414		English Premier League: implications for carbohydrate
415		periodisation. J Sports Sci.2016;34(13):1250-1259.
416		
417	•	
418	2.	Varley MC, Gabbett T, Aughey RJ. Activity profiles of
419		professional soccer, rugby league and Australian
420		tootball match play. J Sports Sci.2014;32(20):1858-
421		1866.
422	2	Coutta AI Kompton T. Sullivan C. Dilaharough I
423	3.	Coulis AJ, Kellipioli I, Sullivali C, Blisbolougii J, Cordy I Pampinini E Matabalia power and aparastic
424 125		costs of proffesional Australian Football match-play <i>I</i>
425		Sci Med Sport 2015:18(2):219-224
427		<i>Set filed Sport.</i> 2010, 10(2). 217 221.
428	4.	Muiika I. Burke LM. Nutrition in team sports. Ann Nutr
429		Metab.2010;57(2):26-35.
430		
431	5.	Gunnarsson TP, Bendiksen M, Bischoff R, Christensen
432		PM, Lesvig B, Madsen K, Stephens F, Greenhaff P,
433		Krustrup P, Bangsbo J. Effect of whey protein- and
434		carbohydrate-enriched diet on glycogen resynthesis
435		during the first 48 h after a soccer game. Scand J Med
436		Sci Sports.2013;23(4):508-515.
437	6	Dredley WI Marshan IC Heigh I Clarks I Denovan
438	0.	TE Twist C Cotton C Shanard S Cooks M Sharma
459		A Impay SG Cooper PG McClaren DP Morton IP
440 1/1		Close GL Muscle glycogen utilisation during Rughy
442		match play. Effects of pre-game carbohydrate <i>J Sci</i>
443		Med Sport 2016:19(12):1033-1038
444		
445	7.	Krustrup, P, Mohr M, Steensberg A, Bencke, J, Kjaer
446		M, Bangsbo J.Muscle and blood metabolites during a
447		soccer game: implications for sprint performance. Med
448		Sci Sports Exerc.2006;38(6):1165-1174.
449		
450	8.	Saltin B. Metabolic fundamentals in exercise. Med Sci
451		Sports.1973;5(3):137-146.
452		
453	0	
454	9.	Inomas DI, Eraman KA, Burke LM. Position of the
455		academy of nutrition and dietetics, dietitians of canada,

456 457 458 459 460	and the american college of sports medicine: nutrition and atheltic performance. <i>J Acad Nutr</i> <i>Diet</i> .2016;116(3):501-28.
461 462 463 464	10. Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. <i>Int J Sports Med</i> .1992;13(2):152-157.
465 466 467 468	11. Wisbey B, Montgomery PG, Pyne DB, Rattray B. Quantifying movement demands of AFL football using GPS tracking. <i>J Sci Med Sport</i> .2010;13:531-536.
469 470 471 472	12. Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. <i>J Appl Physiol</i> .1995;78(1):288-292.
473 474 475 476 477	13. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol Respir Environ Exerc Physiol.1984;56(4):831-838.
478 479 480 481 482	14. Tsintzas OK, Williams C, Boobis L, Greenhaff P. Carbohydrate ingestion and glycogen utilization in different muscle fibre types in man. <i>J Physiol</i> .1995;489 :243-250.
483 484 485 486 487 488	15. Nielsen J, Krustrup P, Nybo L, Gunnarsson TP, Madsen K, Schroder HD, Bangsbo J, Ortenblad N. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match. <i>Appl Physicl</i> 2012;112(10):2550-22(7
489 490 491 492	Physiol.2012;112(10):3559-3367.
493 494 495 496	
497 498 499	
500 501 502	
503 504	

Table 1 – Subject characteristics, external workload, muscle
glycogen utilisation and in-game CHO intake in Player A and B.

	Player A	Player B
Playing Position	Forward	Forward
Age (years)	22	27
Body Mass (kg)	87.2	87.6
Height (m)	1.88	1.82
Warm Up Duration (min)	12	12
Distance (m)	1478	1501
High Speed Running (m) 5.5-6.9 m.s ²	156	159
Sprinting (m) >7 m.s ²	23	31
Match Play Duration (min)	115	98
Number of Rotations	2	4
Average Speed (m/min)	106	114
Total Distance (m)	12229	11182
Walking (m) $0.1-1.9 \text{ m.s}^2$	3801	2801
Jogging (m) $2-3.9 \text{ m.s}^2$	5231	4718
Running (m) $4-5.4 \text{ m.s}^2$	2180	2396
High Speed Running (m) $5.5-6.9 \text{ m.s}^2$	837	1070
Sprinting (m) >7 m.s ²	135	138
Pre-Match Glycogen (mmol.kg ⁻¹ dw)	656	544
Post-Match Glycogen (mmol.kg ⁻¹ dw)	223	416
Total Glycogen Utilisation (mmol.kg ⁻¹ dw)	433	138
Total Exogenous CHO Consumed (g)	0	88
Exogenous CHO (g/h)	0	54
Exogenous CHO (g/min)	0	0.9