125 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    Visual imagery and false memory for pictures:a functional magnetic resonance imaging study in healthy participants

    Get PDF
    BACKGROUND: Visual mental imagery might be critical in the ability to discriminate imagined from perceived pictures. Our aim was to investigate the neural bases of this specific type of reality-monitoring process in individuals with high visual imagery abilities. METHODS: A reality-monitoring task was administered to twenty-six healthy participants using functional magnetic resonance imaging. During the encoding phase, 45 words designating common items, and 45 pictures of other common items, were presented in random order. During the recall phase, participants were required to remember whether a picture of the item had been presented, or only a word. Two subgroups of participants with a propensity for high vs. low visual imagery were contrasted. RESULTS: Activation of the amygdala, left inferior occipital gyrus, insula, and precuneus were observed when high visual imagers encoded words later remembered as pictures. At the recall phase, these same participants activated the middle frontal gyrus and inferior and superior parietal lobes when erroneously remembering pictures. CONCLUSIONS: The formation of visual mental images might activate visual brain areas as well as structures involved in emotional processing. High visual imagers demonstrate increased activation of a fronto-parietal source-monitoring network that enables distinction between imagined and perceived pictures

    Telling lies:The irrepressible truth?

    Get PDF
    Telling a lie takes longer than telling the truth but precisely why remains uncertain. We investigated two processes suggested to increase response times, namely the decision to lie and the construction of a lie response. In Experiments 1 and 2, participants were directed or chose whether to lie or tell the truth. A colored square was presented and participants had to name either the true color of the square or lie about it by claiming it was a different color. In both experiments we found that there was a greater difference between lying and telling the truth when participants were directed to lie compared to when they chose to lie. In Experiments 3 and 4, we compared response times when participants had only one possible lie option to a choice of two or three possible options. There was a greater lying latency effect when questions involved more than one possible lie response. Experiment 5 examined response choice mechanisms through the manipulation of lie plausibility. Overall, results demonstrate several distinct mechanisms that contribute to additional processing requirements when individuals tell a lie

    Measurement of W-pair production in e+e−e^+ e^- collisions at 189 GeV

    Get PDF
    The production of W-pairs is analysed in a data samplecollected by ALEPH at a mean centre-of-mass energy of 188.6 GeV,corresponding to an integrated luminosity of 174.2 pb^-1. Crosssections are given for different topologies of W decays intoleptons or hadrons. Combining all final states and assumingStandard Model branching fractions, the total W-pair cross sectionis measured to be 15.71 +- 0.34 (stat) +- 0.18 (syst) pb.Using also the W-pair data samples collected by ALEPH at lowercentre-of-mass energies, the decay branching fraction of the W bosoninto hadrons is measured to be BR (W hadrons) = 66.97+- 0.65 (stat) +- 0.32 (syst) %, allowing a determination of theCKM matrix element |V(cs)|= 0.951 +- 0.030 (stat) +- 0.015 (syst)

    Searches for neutral Higgs bosons in e+e−e^{+}e^{-} collisions at centre-of-mass energies from 192 to 202 GeV

    Get PDF
    Searches for neutral Higgs bosons are performed with the 237 pb^-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c^2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c^2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cross section, masses below 106.4 GeV/c^2 are excluded

    Measurement of the W mass by direct reconstruction in e+e−e^+ e^- collisions at 172 GeV

    Get PDF
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb−1^{-1} collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: WW→qq‟qq‟mW=81.30+−0.47(stat.)+−0.11(syst.)GeV/c2WW \to q\overline{q}q\overline{q } m_W = 81.30 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WW→lÎœqq‟(l=e,ÎŒ)mW=80.54+−0.47(stat.)+−0.11(syst.)GeV/c2WW \to l\nu q\overline{q}(l=e,\mu) m_W = 80.54 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WW→τΜqq‟mW=79.56+−1.08(stat.)+−0.23(syst.)GeV/C62WW \to \tau\nu q\overline{q} m_W = 79.56 +- 1.08(stat.) +- 0.23(syst.) GeV/C62. The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives: mW=80.80+−0.11(syst.)+−0.03(LEPenergy)GeV/2m_W = 80.80 +- 0.11(syst.) +- 0.03(LEP energy) GeV/^2

    Determination of sin2 Ξeff w using jet charge measurements in hadronic Z decays

    Get PDF
    The electroweak mixing angle is determined with high precision from measurements of the mean difference between forward and backward hemisphere charges in hadronic decays of the Z. A data sample of 2.5 million hadronic Z decays recorded over the period 1990 to 1994 in the ALEPH detector at LEP is used. The mean charge separation between event hemispheres containing the original quark and antiquark is measured for bb̄ and cc̄ events in subsamples selected by their long lifetimes or using fast D*'s. The corresponding average charge separation for light quarks is measured in an inclusive sample from the anticorrelation between charges of opposite hemispheres and agrees with predictions of hadronisation models with a precision of 2%. It is shown that differences between light quark charge separations and the measured average can be determined using hadronisation models, with systematic uncertainties constrained by measurements of inclusive production of kaons, protons and A's. The separations are used to measure the electroweak mixing angle precisely as sin2 Ξeff w = 0.2322 ± 0.0008(exp. stat.) ±0.0007(exp. syst.) ± 0.0008(sep.). The first two errors are due to purely experimental sources whereas the third stems from uncertainties in the quark charge separations

    Uncovering Enhancer Functions Using the α-Globin Locus

    Get PDF
    Over the last three decades, studies of the α- and ÎČ-globin genes clusters have led to elucidation of the general principles of mammalian gene regulation, such as RNA stability, termination of transcription, and, more importantly, the identification of remote regulatory elements. More recently, detailed studies of α-globin regulation, using both mouse and human loci, allowed the dissection of the sequential order in which transcription factors are recruited to the locus during lineage specification. These studies demonstrated the importance of the remote regulatory elements in the recruitment of RNA polymerase II (PolII) together with their role in the generation of intrachromosomal loops within the locus and the removal of polycomb complexes during differentiation. The multiple roles attributed to remote regulatory elements that have emerged from these studies will be discussed

    An evolutionarily ancient mechanism for regulation of hemoglobin expression in vertebrate red cells

    No full text
    The oxygen transport function of hemoglobin (HB) is thought to have arisen ∌500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the HB gene clusters is linked to the widely expressed NPRL3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate HB locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multiglobin gene locus, which contains a remote enhancer that drives globin expression in erythroid cells, before the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current NPRL3-linked HB genes in jawless and jawed vertebrates. This provides an explanation of the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution
    • 

    corecore