2,415 research outputs found

    D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    Full text link
    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references adde

    Detecting affective states in virtual rehabilitation

    Get PDF
    Virtual rehabilitation supports motor training following stroke by means of tailored virtual environments. To optimize therapy outcome, virtual rehabilitation systems automatically adapt to the different patients' changing needs. Adaptation decisions should ideally be guided by both the observable performance and the hidden mind state of the user. We hypothesize that some affective aspects can be inferred from observable metrics. Here we present preliminary results of a classification exercise to decide on 4 states; tiredness, tension, pain and satisfaction. Descriptors of 3D hand movement and finger pressure were collected from 2 post-stroke participants while they practice on a virtual rehabilitation platform. Linear Support Vector Machine models were learnt to unfold a predictive relation between observation and the affective states considered. Initial results are promising (ROC Area under the curve (mean±std): 0.713 ± 0.137). Confirmation of these opens the door to incorporate surrogates of mind state into the algorithm deciding on therapy adaptation

    Unobtrusive inference of affective states in virtual rehabilitation from upper limb motions: a feasibility study

    Get PDF
    Virtual rehabilitation environments may afford greater patient personalization if they could harness the patient's affective state. Four states: anxiety, pain, engagement and tiredness (either physical or psychological), were hypothesized to be inferable from observable metrics of hand location and gripping strength -relevant for rehabilitation-. Contributions are; (a) multiresolution classifier built from Semi-Naïve Bayesian classifiers, and (b) establishing predictive relations for the considered states from the motor proxies capitalizing on the proposed classifier with recognition levels sufficient for exploitation. 3D hand locations and gripping strength streams were recorded from 5 post-stroke patients whilst undergoing motor rehabilitation therapy administered through virtual rehabilitation along 10 sessions over 4 weeks. Features from the streams characterized the motor dynamics, while spontaneous manifestations of the states were labelled from concomitant videos by experts for supervised classification. The new classifier was compared against baseline support vector machine (SVM) and random forest (RF) with all three exhibiting comparable performances. Inference of the aforementioned states departing from chosen motor surrogates appears feasible, expediting increased personalization of virtual motor neurorehabilitation therapies

    Scattering Amplitudes and Toric Geometry

    Get PDF
    In this paper we provide a first attempt towards a toric geometric interpretation of scattering amplitudes. In recent investigations it has indeed been proposed that the all-loop integrand of planar N=4 SYM can be represented in terms of well defined finite objects called on-shell diagrams drawn on disks. Furthermore it has been shown that the physical information of on-shell diagrams is encoded in the geometry of auxiliary algebraic varieties called the totally non negative Grassmannians. In this new formulation the infinite dimensional symmetry of the theory is manifest and many results, that are quite tricky to obtain in terms of the standard Lagrangian formulation of the theory, are instead manifest. In this paper, elaborating on previous results, we provide another picture of the scattering amplitudes in terms of toric geometry. In particular we describe in detail the toric varieties associated to an on-shell diagram, how the singularities of the amplitudes are encoded in some subspaces of the toric variety, and how this picture maps onto the Grassmannian description. Eventually we discuss the action of cluster transformations on the toric varieties. The hope is to provide an alternative description of the scattering amplitudes that could contribute in the developing of this very interesting field of research.Comment: 58 pages, 25 figures, typos corrected, a reference added, to be published in JHE

    A Deep-Time Socioecosystem Framework to Understand Social Vulnerability on a Tropical Island

    Get PDF
    Archaeological research has the potential to contribute to our understanding of social vulnerability to environmental change by providing examples of change in the deep and recent past. Here we argue that human activity and historical processes deeply transform tropical environments through time, and that these changes accumulate on the landscape affecting social vulnerability. These changes, however, are not always evident due to rapid vegetation growth obscuring past human impact. Our research investigates the northernmost 25 km of the Manatí Hydrological Basin in Puerto Rico, focusing on evidence of human activity and environmental characteristics including topography, sediments and vegetation cover. The data collected, which articulates archaeological and ethnographic records, covers the span of pre-Columbian occupation of the region, through the colonial periods, and into the twentieth century. Results show that human activity through time has deeply altered the forests. The accumulation of long-term histories of biotic, abiotic and cultural dynamics affects social sensitivity and exposure. Human ingenuity can widen resilience thresholds, making long-term practices particularly important components of adaptive strategies. Deep-time socioecological perspectives can contribute to current vulnerability assessments by enhancing local and historical records that can feed predictive models and inform decision-making in the present

    Waves on the surface of the Orion molecular cloud

    Full text link
    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the `pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of `waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.Comment: Preprint of publication in Natur

    D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics

    Full text link
    We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation.Comment: 55 pages, v2: typos corrected, minor comments adde

    Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis

    Get PDF
    Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD). There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH). DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30) or without (n=29) DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001), lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01), and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03) were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001) and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001) were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding

    Lead and δ-Aminolevulinic Acid Dehydratase Polymorphism: Where Does It Lead? A Meta-Analysis

    Get PDF
    BACKGROUND: Lead poisoning affects many organs in the body. Lead inhibits δ-aminolevulinic acid dehydratase (ALAD), an enzyme with two co-dominantly expressed alleles, ALAD1 and ALAD2. OBJECTIVE: Our meta-analysis studied the effects of the ALAD polymorphism on a) blood and bone lead levels and b) indicators of target organ toxicity. DATA SOURCE: We included studies reporting one or more of the following by individuals with genotypes ALAD1-1 and ALAD1-2/2-2: blood lead level (BLL), tibia or trabecular lead level, zinc protoporphyrin (ZPP), hemoglobin, serum creatinine, blood urea nitrogen (BUN), dimercaptosuccinic acid–chelatable lead, or blood pressure. DATA EXTRACTION: Sample sizes, means, and standard deviations were extracted for the genotype groups. DATA SYNTHESIS: There was a statistically significant association between ALAD2 carriers and higher BLL in lead-exposed workers (weighted mean differences of 1.93 μg/dL). There was no association with ALAD carrier status among environmentally exposed adults with BLLs < 10 μg/dL. ALAD2 carriers were potentially protected against adverse hemapoietic effects (ZPP and hemoglobin levels), perhaps because of decreased lead bioavailability to heme pathway enzymes. CONCLUSION: Carriers of the ALAD2 allele had higher BLLs than those who were ALAD1 homozygous and higher hemoglobin and lower ZPP, and the latter seems to be inversely related to BLL. Effects on other organs were not well delineated, partly because of the small number of subjects studied and potential modifications caused by other proteins in target tissues or by other polymorphic genes

    Wall Crossing, Quivers and Crystals

    Full text link
    We study the spectrum of BPS D-branes on a Calabi-Yau manifold using the 0+1 dimensional quiver gauge theory that describes the dynamics of the branes at low energies. The results of Kontsevich and Soibelman predict how the degeneracies change. We argue that Seiberg dualities of the quiver gauge theories, which change the basis of BPS states, correspond to crossing the "walls of the second kind." There is a large class of examples, including local del Pezzo surfaces, where the BPS degeneracies of quivers corresponding to one D6 brane bound to arbitrary numbers of D4, D2 and D0 branes are counted by melting crystal configurations. We show that the melting crystals that arise are a discretization of the Calabi-Yau geometry. The shape of the crystal is determined by the Calabi-Yau geometry and the background B-field, and its microscopic structure by the quiver Q. We prove that the BPS degeneracies computed from Q and Q' are related by the Kontsevich Soibelman formula, using a geometric realization of the Seiberg duality in the crystal. We also show that, in the limit of infinite B-field, the combinatorics of crystals arising from the quivers becomes that of the topological vertex. We thus re-derive the Gromov-Witten/Donaldson-Thomas correspondence
    corecore