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Abstract—Virtual rehabilitation environments may afford greater patient personalization if they could harness the patient’s affective
state. Four states: anxiety, pain, engagement and tiredness (either physical or psychological), were hypothesized to be inferable from
observable metrics of hand location and gripping strength -relevant for rehabilitation-. Contributions are; (a) multiresolution classifier
built from Semi-Naı̈ve Bayesian classifiers, and (b) establishing predictive relations for the considered states from the motor proxies
capitalizing on the proposed classifier with recognition levels sufficient for exploitation. 3D hand locations and gripping strength streams
were recorded from 5 post-stroke patients whilst undergoing motor rehabilitation therapy administered through virtual rehabilitation
along 10 sessions over 4 weeks. Features from the streams characterized the motor dynamics, while spontaneous manifestations of
the states were labelled from concomitant videos by experts for supervised classification. The new classifier was compared against
baseline support vector machine (SVM) and random forest (RF) with all three exhibiting comparable performances. Inference of the
aforementioned states departing from chosen motor surrogates appears feasible, expediting increased personalization of virtual motor
neurorehabilitation therapies.

Index Terms—Affective issues in user interaction, posture, hand movements, fingers pressure, rehabilitation, stroke, semi-Naı̈ve
Bayesian classifier.

F

1 INTRODUCTION

D ETECTION of user’s affective states permit the imple-
mentation of algorithmic empathic interaction strate-

gies. A growing area of application of Affective Computing
(AC) is medical therapy, where affective-aware medical
informatics technologies can help in monitoring and person-
alizing therapy to the patients’ needs. In this paper we in-
vestigate the possibility to automatically detect the affective
states of stroke patients during occupational rehabilitation.

Stroke is a leading cause of motor impairment [1], [2]. A
common sequelae to stroke survivors is motor disability of
the upper limb. Motor rehabilitation therapies, by fostering
functionally targeted repetition, help patients to almost fully
or partially recover their functional abilities by means of im-
proving their post-stroke movements [3], [4]. Virtual rehabil-
itation (VR) [5], [6] is an alternative to promote motor reha-

• Jesús Joel Rivas is with the Department of Computer Science, Instituto
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bilitation exercises following stroke whereby motor training
is gamified. For example, VR platforms favour engagement
by simulating tasks that resemble everyday activity to which
people with stroke aim to reengage in [2]. Patient motivation
is crucial to physical therapy adherence [7] and affective
states play an important role in it [8]. A systematic review
by Luker et al. [9] on physical rehabilitation in stroke
patients shows how motivation to engage in the physical
rehabilitation tasks is affected by fatigue, pain, and anxiety
among many other affective factors. Patients reported to be
overwhelmed by pain and fatigue as well as being anxious
about further injury. Pain in itself is an “unpleasant sensory
and emotional experience associated with actual or potential
tissue damage or described in terms of such damage” [10].
Chronic pain (or maladaptive pain) and post-stroke fatigue
are also typical consequences of stroke triggering related
anxiety and fear towards movements [11]. Customizable
and adaptable training virtual environments automatically
change to the different patients’ needs to optimize therapy
outcome but thus far, these adaptive decisions are mostly
based on observable performance metrics [12]. Automatic
decisions should ideally be guided by both the observable
performance and the hidden cognitive-affective state of
the user. It follows that being able to access to the user’s
affective state can be exploited to design highly engaging
and motivating VR sessions.

Incorporating AC into the VR systems enriches the sys-
tem by measuring hidden variables i.e. affective states, often
requiring the definition of observable surrogates. When
not consciously inhibited, our behavioural gestures may
convey information about our affective state. For instance,
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it may be conjectured that gripping force exerted during
the rehabilitation task may be affected by anxiety and by
psychological and physical tiredness [13]. Our hypothesis
is that anxiety, pain, engagement (as a being engrossed
in the current activity) and tiredness are recoverable from
basic observations of hand locations and pressure exerted
upon gripping while the patient practices its rehabilitation
in the virtual environments. If successfully recovered, the
new knowledge may, in the near future, be capitalized upon
for adapting the virtual therapy to the patient’s affective
state. In this paper, we use the term tiredness to indicate
both physical or mental tiredness as in this condition they
may be particularly interlinked.

A feasibility pilot is presented here whereby 5 post-
stroke patients participated longitudinally in a virtual re-
habilitation platform and information of their hand move-
ments and fingers pressure (experimental units) were given
as entries to some classifiers to establish whether recov-
ery of the aforesaid states was viable from the dynamic
behaviour of hand motion and fingers pressure. While
an explanatory relation between the hidden affective state
and the observable surrogates might be desirable, for the
purposes of informing the decision maker in the virtual
rehabilitation platform, a predictive relation suffices. Yet,
even finding such predictive relation is far from trivial as
we shall exemplify here by means of reporting results from
the application of baseline classifiers. Hence, in our quest to
uncover the predictive association we here further propose
a novel classification strategy, the so called Multiresolution
Semi-Naı̈ve Bayesian classifier (MSNB). Since adaptation is
often patient-based, we chose to train the classifiers inde-
pendently for each patient. From the point of view of the
classifier, the observations correspond to the local dynamics
of hand movements and fingers pressure of the patient
during the affective episodes. In other words, the sample
size is not 5 (patients), but the number of affective episodes
as labelled by experts. The registered affective states were
manifested spontaneously by the patients whilst they par-
ticipated in the virtual rehabilitation program, i.e. they were
not acted. At this point, it suffices for our purposes to
achieve a predictive power well above random choice. We
do not intend to control every aspect of the game flux such
as online requests of changing game behaviour according to
the affective state but to provide the adaptation algorithms,
when the technology is matured, with an additional infor-
mation channel.

The main contributions of this paper are two: a) A
novel classifier, Multiresolution Semi-Naı̈ve Bayesian clas-
sifier (MSNB), which exploits structural improvement and
temporal multiresolution to overcome the limitations of the
naı̈ve Bayesian classifier when dealing with the varying
dynamics of the process, and b) Leveraging speed and
acceleration of hand displacements and fingers pressure as
a means to recognize affective states. While the evalua-
tion of the approach is based only on five stroke patients,
their data were recorded longitudinally over a period of
4 weeks throughout which their physical capabilities im-
proved bringing hence more complexity to the recognition
of the affective states.

This paper is organized as follows, section 2 summarizes
related work. Sections 3, 4 and 5 describe the methodolog-

ical steps to this study, explaining data collection which
includes the affective states selection and labelling step; the
design of the feature vector and the design of the proposed
classification model MSNB. Section 6 highlights the results
obtained with MSNB, including comparisons with SVM,
SNB and RF. Section 7 contains the discussion and, finally
section 8 summarizes main findings and describes future
approaches to follow.

2 RELATED WORK

2.1 Naturalistic Everyday Affective States Recognition
In recognizing naturalistic everyday affective states and
understanding human behaviour, there are several open re-
search challenges [14]. There is a diversity of affective states
and it is difficult to fully separate or discriminate them [15].
Also, people differ in the way they express those states as
their expressions are affected by idiosyncrasy [16]. Further,
the duration of emotions is highly variable [17]. Scherer K.R.
and Ekman P. reported durations 0.5 to 4 seconds for some
emotions in their works [18], [19], but there is an ongoing
debate about how long emotions last and this is hindered
by the lack of consensus about the definition of emotion
[18], [20], [21]. Despite all, gaining a partial solution is still
valuable and helpful, and it may contribute to intelligent
interactions that benefit people’s health and productivity
[15].

2.2 Machine Learning Approaches in Affective Com-
puting
A number of machine learning approaches have been used
to continuously track information over time and recognize
affective states [22], [23], [24], [25], [26], [27]. The temporal
variation is an important issue in recognizing naturalistic
everyday affective states [28]. SVM is a popular choice in
many affective recognition systems, so it is used here as
baseline [29]. Other classifiers that have been employed
include neural networks [22], recurrent neural networks
[24], [30], dynamic Bayesian networks [27], hidden Markov
models [25], [26], [31], [32], latent-dynamic conditional ran-
dom fields [33], [34]. The Naı̈ve Bayes classifiers has been
studied and compared with others classifiers and has often
been more effective than sophisticated rules [35], [36], [37],
[38]. We here proposed to use a classifier derived from
Naı̈ve Bayes (Semi-Naı̈ve Bayes) for its efficiency, simplicity
and because it deals with dependent features [39]. Antici-
pating the variability in the emotion durations, our Semi-
Naı̈ve Bayes multiresolution variant embeds the dynamic
behaviour of hand movements and fingers pressure in
windows of consecutive points of the hand trace and the
fingers pressure trace over time. We consider recognizing
the moment when the affective state begins, when it is
manifesting and when it finishes.

2.3 Automatic Affect Recognition in Physical Rehabili-
tation
A particular area that has seen an increased attempt to
study naturalist expressions in ecological or semi-ecological
contexts is rehabilitation. Aung et al. [40] for example,
investigated recognition of pain-related affective states in
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chronic pain physical rehabilitation within the Emo&Pain
project. The purpose was to develop automated coaching
systems capable of recognizing pain related affective states.
A multimodal database consisting of facial expressions,
vocal expression, body movement and muscle activity was
created and labelled according to pain levels, and protective
behaviour (e.g., fear of pain, pain, anxiety towards move-
ment). Automatic recognition of expressions was attempted
with SVM and they report a Receiver Operating Character-
istic (ROC) Area Under the Curve (AUC) of 0.658 ± 0.170
(mean±std) detection rate [40]. The performance of the au-
tomatic detection of protective behaviour varied according
to the exercise being performed. The analysis also showed
that protective behaviour is mostly expressed during the
exercise whereas facial expressions are less frequent and
generally expressed at the end of the exercise, possibly
with a communication purpose. This suggest that body
behaviour exhibited during physical rehabilitation is critical
to assess the psychological state of the patient especially
when dealing with chronic conditions rather than acute pain
[41].

In stroke rehabilitation, Kan et al. [42] built a partially
observable Markov decision process (POMDP) to modify
exercise parameters for rehabilitation of the upper limb.
The automatic estimation of patient fatigue was included
in the decision model so that the robotic system adapt
to the patient’s specific needs. A therapist and a patient
were recruited for the study. The POMDP decisions were
in agreement with the therapist 65% of the time. Further,
the patient reported satisfaction and interest in using the
system. Bonarini et al [43] focused on studying stress during
robotic rehabilitation of upper limbs in post-stroke patients.
Biological signals, such as blood pressure, skin conductance,
electrocardiogram (EKG), respiratory rate, electromyogram
(EMG) and temperature were sensed and fed to a k-Nearest
Neighbour (k = 11) classifier. Five levels of stress were
discriminated. Data from 6 healthy people was clustered
and 88.09% accuracy was reported.

Also within the rehabilitation domain, our group previ-
ously developed an adaptation module for a VR platform
based on a Markov decision process (MDP) and reinforce-
ment learning (RL) to adjust the therapy to the patient’s
progress [44]. Capabilities measurements based on patient
speed to reach the game targets and the steadiness control
of the upper limb while approaching game targets were
monitored. The adaptation consisted in optimizing game
challenge (suit game difficulty) according to patient’s per-
formance [2]. Congruence of model decisions against the
therapist decisions was deemed high when the algorithm
training period length was limited to realistic constraints of
available event information. Although the decision model
exhibited good performance, we believe that the system
can be further improved if we incorporate the automatic
detection of the patient’s affective states. This work explores
this research line, and represents our initial efforts to make
the adaptation engine of the VR platform aware of the
affective state of the patient. In particular, this study differs
from the ones presented above on stroke, as we only used
hand displacement and gripping pressure from the affected
upper limb to infer the affective states, to avoid additional
sensors not already available in the rehabilitation platform

as detailed below.

3 COLLECTING DATA OF SPONTANEOUS AFFEC-
TIVE STATES OF FIVE POST-STROKE PATIENTS

3.1 Virtual Rehabilitation Platform: Gesture Therapy
Gesture Therapy (GT) [2], developed by our group, is a vir-
tual rehabilitation (VR) alternative for helping post-stroke
patients in their upper limbs rehabilitation exercises. Similar
to other VR platforms, exercises are presented as serious
games. Distinctively, some advantages of GT are portability
(it only needs a computer with a web camera and an ad
hoc controller referred to as gripper), it is inexpensive, and
it contains artificial intelligence supporting adaptability (it
has an adaptation module that considers user’s performance
to adjust the games with therapist supervision). During a
regular rehabilitation session, GT gripper is hold with the
paretic side hand to reach some game targets (see Fig. 1),
and its 3D location is tracked using a fixed webcam. Depth
is estimated exploiting previous knowledge of the size of
the gripper’s topping ball. The gripper also incorporates
a force sensor on the front to sense gripping strength. If
our hypothesis is plausible, we should be able to recover
some of the aforementioned states capitalizing only on the
3D trace of hand displacements and on the pressure trace as
detected by the gripper. Inference of these states may later
be used to design empathic interfaces which adapt to the
user’s affective conditions.

Fig. 1. The Gesture Therapy platform. The gripper, held with the left
hand here, serves to control an avatar on the virtual environment (in
this case, the hand with the kitchen palette on the screen). As the user
interacts with the rehabilitation oriented games, the 3D location of the
hand, and the gripping force are sensed and sent to the computer for
processing the user’s performance. Recognition of some affective states
of the patient using only hand movements and fingers pressure should
help to adjust the games challenges.

3.2 Patient Recruitment and Data Collection
We recorded data along longitudinal rehabilitation sessions
from 5 post-stroke patients whilst interacting with GT. This
data includes instantaneous hand location proxied by the
gripper’s ball, gripping strength and a frontal video. The
stream of 3D coordinates of the hand motions and fingers
pressure, sensed through the gripper, were taken as inde-
pendent variables; and the state as labelled by psychiatrists
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from the frontal video, as dependent variable. After the tag-
ging process was developed, the inter-annotator agreement
was computed. The set of states of interest were chosen by
a group of experts in psychology, motor neurorehabilitation
and affective computing. In this initial effort we are inten-
tionally skipping emotion recognition from facial expression
(available as it is from the video stream), which we aim to
consider in future models.

Stroke survivor volunteers were recruited from the In-
stituto Nacional de Neurologı́a y Neurocirugı́a (INNN) in
Mexico. The demographic information is summarized in
Table 1. Following brief explanations of the research, they
give their consent to participate, and agreed that their re-
habilitation sessions were video recorded and their motions
and pressure data were used for scientific purposes.

TABLE 1
COHORT DEMOGRAPHICS

P1 P2 P3 P4 P5

Age [years] 55 57 67 44 41

Gender M F M M M

Stroke date Apr, 2014 May, 2014 Jan, 2013 Dec, 2016 Nov, 2015

Therapy
onset

May 8th,
2014

Sep 24th,
2014

Jul 5th,
2016

Jul 10th,
2017

Jul 7th,
2017

Paretic side Left Left Right Right Right

# of sessions 6 10 10 8 5

Patient’s data was recorded from a total of 10 rehabil-
itation sessions in a period of 4 weeks. Each session took
place in a different day (max 3 per week) and each one
was 45 mins long on average. Playing time is necessarily
shorter; the rest of the time consisted of patient’s wel-
come, therapist’s instructions, stretching exercises and game
switching. All the sessions were supervised by a qualified
occupational therapist that had previous experience with
the GT platform.

The platform automatically saves the following data
through its tracking system while patients are interacting
with the games:

• 3D coordinates of the coloured gripper ball, proxy
for hand location at 15 Hz. Coordinates are refer-
enced to camera position. The recovery of depth
from monoscopic vision is achieved by exploiting
previous knowledge of the gripper’s ball size as
described in [45].

• Gripping pressure exerted on the gripper frontal
force sensor at 15 values per second (synchronized
with the 3D coordinates of hand location).

• Frontal digital video at 15 frames per second. The
video displays face expressions, hand movements
and posture of the upper torso (see Fig. 2). Here, this
information was only used for labelling the patient’s
affective states; but not used for classification pur-
poses.

In addition, the participants were also asked to answer
the Intrinsic Motivation Inventory (IMI) questionnaire [46],
[47], [48], [49] at the end of every rehabilitation session.

Fig. 2. A patient during a rehabilitation session with GT platform during
this feasibility study. Reproduced with permission [50].

3.3 Selection of states to monitor

A variety of sensorial, affective and cognitive phenomena
can hinder physical rehabilitation in many conditions in-
cluding stroke. A systematic review [9] provides a summary
of the phenomena identified by the literature. Whilst ad-
dressing all of them in this study would not be possible, it
was decided to address the ones that were directly related
to physical activity sessions rather than general ones such
as frustration due to lack of acceptance of the medical
condition or general post-stroke traits (e.g., anxiety trait)
and mood. We focus on affective and physical responses
to physical activity as they occur, with the aim to build a
system able to react to the in-the-moment person’s needs.
The set of states were chosen through discussion with a
group formed by a therapist, psychiatrists and an affective
computing expert involved in the project. Pain (dolor in
Spanish), fatigue (cansancio) and anxiety (ansiedad) were
considered primary factors that should be taken into ac-
count to personalize at run-time the level of the game or
provide psychological support. Working in a state of pain
and fatigue or anxiety does not only lead to an increase in
the levels of those same states (e.g., due to increase muscle
tension and hence to the movement control difficulty) but
also to a reduction in therapy efficacy (e.g., due to use of
compensatory movements) and in the long term desire to
engage in the therapy. Anxiety could be due to the fear of
not being capable of performing the task or of increase pain.
Continue exposure to anxiety and pain may also contribute
to the possibility to develop chronic pain [51]. The automatic
detection of fatigue or pain could trigger adjustments in the
game difficulty level or even suggest a break, whilst the
detection of anxiety could trigger breathing exercise during
the game or breaks. The group also recommended to track
engagement as an affective-motivational state (motivación in
Spanish) as it could provide guidelines of when to increase
the task challenge or help identify patient’s preferences.

3.4 Labelling

Three psychiatrists visually inspected the rehabilitation ses-
sion videos. They were blind to each other and labelled
consecutive video frames as intervals where they consid-
ered the patient had manifested tiredness, anxiety, pain or
engagement. In addition, these raters had the patient’s IMI
answers for the corresponding session at hand.

It should be noted that we were not interested in anxiety
traits as measured by standard questionnaire (e.g., STAI)
or general daily levels of pain and fatigue but on tracking
the fluctuation of the patient’s affective and physical states
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to enable personalized support when needed. Whilst the
ability to recognize expressions of pain or anxiety in others
is not an easy task, our long term aim is to build a system
that has at least the ability of an expert observer to detect
relevant states in a patient. We could have used continuous
self-report from patients but this approach would have been
disruptive and possibly led to increase anxiety. In addition,
patients often report not to be aware of their anxiety until it
is very high given the cognitive and physical effort required
by the task. Finally, it was decided not to use a dimensional
approach (e.g., valence/arousal or PANAS) as it would not
be sufficiently specific to inform interventions as each state
(e.g., pain, fatigue, anxiety, frustration, low mood) may need
a different type of intervention.

For the labelling process, raters made use of software
ELAN - Linguistic Annotator 4.7.0 [52] tagging the four
states in different tiers as illustrated in Fig. 3.

Fig. 3. Raters used ELAN to tag the interval of frames where (s)he
considered the patient showed a state: tiredness, anxiety, pain and
engagement. The videos were displayed in the upper left side (in the
video viewer) and the rater had the media control buttons to play, stop,
go backward or forward one frame, etc. The label lines or tiers are
located in the whole lower side. A coloured tier identifies each state and
these tiers were synchronized with video frames.

Every rater annotated with ‘1’ in the tier of the respective
state in the interval of frames where (s)he estimated the
presence of the state. The system further filled with ‘-1’
the rest of frames of that tier, considering that the rater
was expressing that situation, the absence of the state. For
every video frame, GT registered the associated respective
3D coordinates of the representative point of hand location
and registered the pressure value at that instant. The final
annotation for each frame was assigned as the majority
agreement among the raters. Finally, the inter-rater agree-
ment was calculated. When raters tagged a frame with the
presence or absence of a state, the system retrieves the
corresponding tag for 3D coordinates and pressure value.

4 DESIGNING THE FEATURE VECTOR

4.1 Feature Extraction
From the raw data collected, eight features were extracted
to characterize the dynamic behaviour of the motions and
pressures upon the gripper offline. GT recorded the stream
video at 15Hz. The frame time in GT video frT = 1

15 s. We
denote 2 consecutive hand location points (3D coordinates
in real world that were normalized to the interval [0,1])
as pi = (xi, yi, zi) and pi+1 = (xi+1, yi+1, zi+1), where
pi, pi+1 ∈ [0, 1]3 ⊂ R3. Also we denote Pi, the pressure
recorded at frame i, Pi ∈ [0, 1] ⊂ R (pi, pi+1, Pi are normal-
ized). Table 2 presents the eight extracted features.

TABLE 2
EXTRACTED FEATURES CHARACTERIZING MOTOR RESPONSES

Feature name Operationalization

Hs: hand speed
[meters/second]

Hsi+1 =√
(xi+1−xi)2+(yi+1−yi)2+(zi+1−zi)2

frT

(1)

Ha: hand
acceleration
[meters/second2]

Hai+1 =
|Hsi+1−Hsi|

frT
(2)

Dx: differential
location (distance
travelled) of the
hand along the x
axis [meters]

Dxi+1 = |xi+1 − xi| (3)

Dy: differential
location (distance
travelled) of the
hand along the y
axis [meters]

Dyi+1 = |yi+1 − yi| (4)

Dz: differential
location (distance
travelled) of the
hand along the z
axis [meters]

Dzi+1 = |zi+1 − zi| (5)

AvP : average
pressure
[kiloPascals]

AvPi+1 =
(Pi+1+Pi)

2
(6)

Ps: pressure speed
[kiloPascals/second]

Psi+1 =
|Pi+1−Pi|

frT
(7)

Pa: pressure
acceleration
[kiloPascals/second2]

Pai+1 =
|Psi+1−Psi|

frT
(8)

4.2 Feature Vector
The time series from hand varying location TrM (Trace
of hand Movements) and fingers pressure TrP (Trace of
Pressure) are collected synchronously. The consecutive la-
bels assigned by the raters to the video frames can also be
seen as a concomitant time series: TrL (Trace of Labels).
It is possible to shift a window of length W on the series
TrM and TrP and calculate the local values of the features
described. It is convenient that the window has odd length
so that it may be centred in a certain time sample pi along
these concurrent series. W represents the neighbourhood
of pi as depicted in Fig. 4. Shifting of W on TrM permit
extracting the five features of hand motions (average speed,
average acceleration and average of differential location
along each axis: x, y and z), while doing so on TrP leave
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us the features characterizing the exerted pressure (average
pressure, average pressure speed and average pressure ac-
celeration).

Fig. 4. Exemplification of the shifting of a window W of size 5 time sam-
ples centred around sample pi. The example corresponds to changes in
TrM along the y axis. For simplicity, we represented here the process
with the hand movements only in y axis, but the actual TrM series is
multivariate with x, y and z displacements.

Given a window sized |W | = 2k + 1, k ∈ N then we
have 2k + 1 consecutive points pi−k , pi−k+1 , ... , pi−1 ,
pi , pi+1 , ... , pi+k−1 , pi+k. The windowed features are
calculated as indicated in Table 3. Since at least 3 points are
needed to calculate acceleration, the minimum window size
is |W | = 3. All features represent averages in window W .
Then the feature vector ~Fi for point pi inW (using equations
(10) to (17)) is:

~Fi = (AHsi, AHai, ADxi, ADyi, ADzi, AvPi, APsi, APai)
(9)

4.3 Assigning the Classes
For every feature vector, ~Fi, there is an assignment of 4
binary values, each one for the respective class of every
affective state. Independent classifiers are built for each
affective state. Classes are binary and correspond to the
presence or absence of the affective state being classified.
Classes were therefore coded separately using the time
series of the labels, TrL. Let e ∈ E, where E = {tiredness,
anxiety, pain, engagement}, be any of the patient states;
then shifting a window W centred at pi over TrL give
vectors of 4 binary labels, 1 or -1, corresponding to the
presence or absence of each affective state as appreciated by
the majority expert raters at each sample of the series. The
final class labels for each affective state at pi is the majority
class among the labels (1 or -1) assigned by the raters to the
frames covered by window W around the current point pi.

Formally, for a window W such that |W | = 2k + 1, k ∈
N, k ≥ 1, centred around point pi of the series TrL of an
affective state e ∈ E, the class for affective state e in point
pi is given by:

classe,i = argmax
t∈{−1,1}

|{j|W [i+ j] = t ∧ j ∈ Z ∧−k ≤ j ≤ k}|

(18)

TABLE 3
WINDOWED FEATURES OF W , |W | = 2k + 1, k ∈ N

Feature name Formula

Average of hand
speed in W (using
Hs given by (1))

AHsi =
∑k

j=−k+1 Hsi+j

2k (10)

Average of hand
acceleration in W
(using Ha given by
(2))

AHai =
∑k

j=−k+2 Hai+j

2k−1 (11)

Average of
differential location
along the x axis for
W (using Dx given
by (3))

ADxi =
∑k

j=−k+1 Dxi+j

2k (12)

Average of
differential location
along the y axis for
W (using Dy given
by (4))

ADyi =
∑k

j=−k+1 Dyi+j

2k (13)

Average of
differential location
along the z axis for
W (using Dz given
by (5))

ADzi =
∑k

j=−k+1 Dzi+j

2k (14)

Average pressure in
W (as (6))

AvPi =
∑k

j=−k Pi+j

2k+1 (15)

Average of pressure
speed in W (using
Ps given by (7))

APsi =
∑k

j=−k+1 Psi+j

2k (16)

Average of pressure
acceleration in W
(using Pa given by
(8))

APai =
∑k

j=−k+2 Pai+j

2k−1 (17)

5 MULTIRESOLUTION SEMI-NAÏVE BAYESIAN
(MSNB) CLASSIFIER

5.1 Semi-Naı̈ve Bayesian (SNB) Classifier

SNB classifier is based on Naı̈ve Bayes classifier [53], a
probabilistic classifier based on Bayes’ theorem. Given a
sample sa = (a1, a2, · · · , an), the decision rule for a two
class problem (class variable C takes values in {-1, 1}), Ai
represents the ith attribute, is expressed as:

class(sa) = argmax
c∈{−1,1}

(prob(C = c)
n∏
i=1

prob(Ai = ai|C = c))

(19)
The product in (19) is based on the strong (naı̈ve) as-

sumption that all attributes Ai are independent given the
class C [54]. To alleviate this assumption, the SNB classifier
executes a structural improvement [54], [55], [56] to elimi-
nate and/or to join attributes. The structural improvement,
as illustrated in Fig. 5, is based on mutual information
and conditional mutual information calculations [57]. After
each structural modification operation, whether elimination
or join, the new structure is tested to estimate whether
classification accuracy is improved. The process is repeated
until all attributes have been checked. Upon successful
structural improvement, an enhanced feature representation
is obtained.
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Fig. 5. Example of structural improvement method: (a) example of
an original Naı̈ve Bayes structure with 5 attributes (all the attributes
are assumed independent), (b) Attribute A2 is removed because the
mutual information value between A2 and the class C is insignificant,
(c) Attributes A4 and A5 are joined into one, as they are considered
dependent base upon the mutual information value between A4 and A5

given the class C.

For handling continuous data inputs in the SNB clas-
sifier, we discretized feature values using the Proportional
k-Interval Discretization (PKID) [37]. PKID has been sug-
gested to be a suitable discretization alternative for Bayesian
classifiers [37].

In a previous effort, SNB classifier was used with promis-
ing results [58], and hence we continue to employ it in
this research for comparison purposes. Here, SNB classifiers
were independently trained to predict absence or presence
of each affective state, and independently for each patient,
so we had a total number of models of (number of affective
states) × (number of patients) × (number of window sizes)
which is 100. Each one was a binary classifier (with classes
-1 and 1), which received as inputs the discretized samples
of the feature vector (expressed in (9)), calculated according
to window size |W | and the corresponding classes (defined
in (18)) for these samples.

5.2 Multiresolution SNB Classifier
As aforementioned, emotions have a complex dynamics
with non stationary episode length. Consequently, new to
this effort, we propose MSNB classifier trying to detect the
presence of some patient states (tiredness, anxiety, pain and
engagement) during virtual rehabilitation, through a strat-
egy of shifting a set of parallel windows W of different odd
sizes along the TrM , TrP and TrL, but all concurrently
centred around the same time sample pi of these parallel
time series. The rationale is to recognize the presence of
an affective state with simultaneous estimators at different
resolutions in pi as schematically exemplified in Fig. 6.

MSNB has been designed using SNB as the basis classi-
fier for each window of odd size. The purpose of each SNB
is to infer the presence (1) or absence (-1) of the affective
state (into consideration) at every sample pi of these parallel
series. MSNB calculates the SNB result for each window size
and assigns the class to sample pi, by majority voting of
the SNBs (see Fig. 6). Although, MSNB was designed using
SNB as the basis classifier, in principle other classifiers could

Fig. 6. Schematic depiction of the multiresolution process with five
windows W sized 3, 5, 7, 9 and 11 respectively centred around pi.
Exemplification corresponds to TrM along y axis. A SNB classifier is
trained for each window size to infer the presence (1) or absence (-1)
of the affective state into consideration. Afterwards, each of the SNB
models (5 SNB for this example) return a class label in each sample pi
of the series, and the MSNB assigns the final class label (1 or -1) to pi
by majority voting.

be used as the basis classifier instead of SNB under the
multiresolution strategy. MSNB is indeed an ensemble of
classifiers that tries to synthesize different detectors in one
meta-recognizer.

Our data was recorded for each patient whilst (s)he was
interacting with the virtual rehabilitation platform during
the sessions and labelled by experts as previously described.
The dataset contains the parallel time series from where are
extracted the feature vectors and classes that are passed to
train the MSNB classifier. Since the concurrent multiresolu-
tion windows W are centred around the same sample pi,
a group of underrepresented samples at the beginning and
final of the whole series introducing a boundary bias. This
situation occurs because the concentrical windows do not
use some first or last points of the series. For example, in
Fig. 6, window |W | = 3 do not use the first and last 4 points
of the series. But this effect losses relevance as the time series
length increases.

MSNB was independently trained for each affective state
and for each patient, so we had as many MSNB models as
(number of affective states) × (number of patients) which
is 20. In Fig. 7, the operation of MSNB is charted. For
every window size, three processes are executed: (i) feature
extraction and class assignment, (ii) discretization and (iii)
construction of a SNB model to infer the presence (1) or
absence (-1) of an affective state. Afterwards, these SNB
models yield their estimations for pi, and the MSNB assigns
the final class label (1 or -1) to pi by majority voting.

5.3 Baseline Classifiers: Support Vector Machine
(SVM) and Random Forests (RF)

Support vector machine (SVM) models served as baseline
for concurrent validity against SNB and MSNB. The SVM
with RBF kernel models (K(x, y) = exp γ ∗ <x−y,x−y>)
were trained in Weka 3.8.1 [59] with the same number of
models as SNB. The parameters were optimized through
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Fig. 7. Flowchart of MSNB classifier operations. Input data (hand lo-
cation: TrM , gripping pressures: TrP and, in training phase, the cor-
responding affective states tags: TrL) were processed with windows
of different old sizes. At each window size, features vectors are ex-
tracted and, for training phase, class labels are assigned. Afterwards,
a discretization process transforms data for the SNB classifiers. The
presence or absence of the affective state is estimated by SNB for each
window size. Finally, MSNB assigns the final class (1 or -1) to each point
pi by majority voting.

grid search for each patient, affective state and window size.
Linear SVM models (K(x, y) =< x, y >) were trained too
with the same number of models as SNB, and the param-
eters (c and epsilon) were optimized using grid search for
each patient, affective state and window size, but the results
were lower than SVM with RBF kernel.

Random forests (RF) [60] models were also used as
baseline for comparing against SNB and MSNB. In the same
way, the RF models were trained in Weka 3.8.1 with the
same number of models as SNB. The number of trees was
changed with 10, 100 and 300 instances, trying to optimize
the parameters for the model of each patient, affective state
and window size.

5.4 Metrics

Internal validity of the SVM, SNB, RF and MSNB classifier
models was established using the stratified 10 cross folding
replication mechanism across all the rehabilitation sessions.
Three classical metrics associated with the confusion matrix
(accuracy, F-measure and ROC AUC1) were used to evaluate
the results of each classification model and to compare them.

6 EXPERIMENTAL RESULTS

We intended to record ten sessions from each patient (P1,
P2, P3, P4 and P5) over a four weeks period. Patients P2
and P3 attended all the 10 sessions while patient P1 only

1. TP: true positive, TN: true negative, FP: false positive and FN:
false negative; accuracy = (TP+TN)/(TP+FP+TN+FN); sensitivity =
TP/(TP+FN); specificity = TN/(TN+FP); precision = TP/(TP+FP); F-
measure = 2(precision*sensitivity)/(precision+sensitivity); ROC AUC =
(sensitivity + specificity)/2.

attended 6 sessions, patients P4 attended 8 sessions, and
P5 attended 5 sessions respectively. The platform version of
GT used for this study includes a set of 5 serious games:
steak, fly killers, clean window, wash dishes and spider
[2]. Pressing was only needed for fly killers. A video clip
per game was retrieved for every patient during his/her
playing time. Each video clip lasted about 1 minute and
10 seconds. During regular virtual rehabilitation sessions,
each game is played for up to 3 minutes approximately as
dictated by the therapist. The games are switched frequently
to avoid boredom. In each rehabilitation session, the patients
played all the 5 games, so 5 video clips were obtained
per session, with an exception of one session of P1 in
which he only played 4 games. For this reason, P1 had
29 (=(6x5)-1) video clips, P2 and P3 had 50 (=10x5) video
clips, P4 had 40 (=8x5) video clips, and P5 had 25 (=5x5)
video clips. The video clips of interest for this study were
the fly killers videos because they had critical information
about the pressure exerted by the fingers. Note that any
presence of pressure in the other games, or even in this
game but out of timing, can be regarded as hints of affective
interactions but we decided to skip this at this time. From
the video clips for fly killers game along all sessions, the
total number of samples i.e. feature vectors, were 5826 for
P1, 8935 for P2, 7334 for P3, 6068 for P4 and 3814 samples
for P5, respectively.

Fleiss’ κ [61] was run to determine agreement between
the three raters (psychiatrists) regarding the assessment of
the affective states independently in the video clips. Fleiss’ κ
were 0.6107 for tiredness, 0.2271 for anxiety, 0.2420 for pain,
and 0.4607 for engagement. This suggests (according with
[62]) substantial agreement for tiredness, moderate agree-
ment for engagement and fair agreement for anxiety and
pain. Indeed, despite their experience, raters particularly
expressed their concerns about tagging anxiety through a
short video due to its complexity.

During the labelling process, pain was not appreciated
by the raters for patient P2 and therefore there are no results
for this state associated for P2.

6.1 Total Number of Models
Five levels were considered for multiresolution. Feature
vectors timecourses were processed at window sizes |W | =
3, 5, 7, 9, 11 obtaining the corresponding patterns covering a
range from 0.2 seconds to 0.73 seconds temporal windows.
A different SNB model for each state (4: tiredness, anxiety,
pain and engagement) except for P2 that we had 3 states (3:
tiredness, anxiety and engagement), and each window value
(3, 5, 7, 9, 11) was developed for a total of 20 SNB models
for P1, P3, P4 and P5, and 15 SNB models for P2. In the
same way, 20 SVM models and 20 RF models for P1, P3, P4
and P5, and 15 SVM and 15 RF for P2 were obtained. There
were MSNB models for each patient and for each affective
state, in total 4 MSNB models for P1, P3, P4 and P5, and 3
MSNB models for P2.

6.2 Results
Table 4 summarizes the classification results of SVM with
RBF kernel, SNB, RF and MSNB for all the patients: P1, P2,
P3, P4 and P5, respectively, for the 4 states (3 states for P2).
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TABLE 4
CLASSIFICATION RESULTS (µ±σ) FOR SVM WITH RBF KERNEL, SNB, RF AND MSNB ACROSS THE 10 FOLDS (AND ACROSS THE FIVE WINDOW
SIZES |W |=3,5,7,9,11 FOR SVM WITH RBF KERNEL, SNB AND RF). AVERAGE RESULTS OF ALL THE CONSIDERED STATES OF A PATIENT ARE
SHOWN IN THE LAST ROW OF THAT PATIENT. THE BEST RESULTS FOR CLASSIFIER AND ROC AUC AVERAGE ARE SHOWN IN BOLDFACE TYPE.

Patient P1 Patient P2 Patient P3 Patient P4 Patient P5

Patient
state

accu-
racy

F-
measure

ROC
AUC

accu-
racy

F-
measure

ROC
AUC

accu-
racy

F-
measure

ROC
AUC

accu-
racy

F-
measure

ROC
AUC

accu-
racy

F-
measure

ROC
AUC

SVM with RBF kernel

tiredness
0.910±
0.096

0.891±
0.120

0.906±
0.099

0.888±
0.100

0.875±
0.118

0.886±
0.100

0.704±
0.061

0.690±
0.073

0.704±
0.061

0.779±
0.059

0.785±
0.060

0.778±
0.059

0.708±
0.082

0.683±
0.115

0.709±
0.081

anxiety
0.864±
0.089

0.836±
0.111

0.860±
0.091

0.754±
0.124

0.739±
0.140

0.754±
0.124

0.717±
0.053

0.754±
0.048

0.708±
0.053

0.753±
0.063

0.747±
0.071

0.753±
0.063

0.723±
0.084

0.737±
0.067

0.723±
0.085

pain
0.897±
0.106

0.847±
0.162

0.883±
0.121

− − − 0.838±
0.094

0.868±
0.075

0.831±
0.114

0.812±
0.096

0.848±
0.077

0.803±
0.108

0.885±
0.170

0.900±
0.149

0.885±
0.184

engagement
0.929±
0.031

0.918±
0.034

0.934±
0.028

0.710±
0.074

0.718±
0.069

0.710±
0.074

0.688±
0.071

0.691±
0.071

0.689±
0.071

0.744±
0.073

0.751±
0.064

0.744±
0.073

0.728±
0.069

0.680±
0.102

0.722±
0.072

average
0.900±
0.088

0.873±
0.120

0.896±
0.095

0.784±
0.126

0.777±
0.132

0.783±
0.126

0.737±
0.092

0.751±
0.099

0.733±
0.097

0.772±
0.078

0.783±
0.079

0.770±
0.081

0.761±
0.130

0.750±
0.143

0.760±
0.135

SNB

tiredness
0.907±
0.100

0.925±
0.075

0.896±
0.116

0.864±
0.120

0.877±
0.107

0.862±
0.119

0.628±
0.109

0.672±
0.076

0.629±
0.109

0.719±
0.116

0.708±
0.127

0.719±
0.115

0.643±
0.064

0.676±
0.048

0.645±
0.062

anxiety
0.846±
0.139

0.874±
0.104

0.842±
0.144

0.639±
0.063

0.710±
0.053

0.625±
0.065

0.682±
0.072

0.630±
0.103

0.677±
0.071

0.639±
0.087

0.664±
0.097

0.639±
0.086

0.701±
0.126

0.710±
0.129

0.702±
0.125

pain
0.924±
0.149

0.928±
0.161

0.919±
0.156

− − − 0.890±
0.118

0.881±
0.130

0.902±
0.108

0.706±
0.094

0.621±
0.117

0.696±
0.087

0.927±
0.151

0.935±
0.136

0.938±
0.128

engagement
0.901±
0.164

0.928±
0.114

0.889±
0.186

0.579±
0.066

0.619±
0.066

0.579±
0.065

0.572±
0.056

0.626±
0.062

0.571±
0.056

0.600±
0.102

0.635±
0.102

0.601±
0.101

0.653±
0.139

0.706±
0.119

0.644±
0.145

average
0.895±
0.142

0.914±
0.119

0.887±
0.154

0.694±
0.151

0.735±
0.133

0.689±
0.152

0.693±
0.152

0.702±
0.142

0.695±
0.154

0.666±
0.111

0.657±
0.116

0.664±
0.108

0.731±
0.169

0.756±
0.153

0.732±
0.170

RF

tiredness
0.897±
0.099

0.870±
0.135

0.891±
0.106

0.825±
0.105

0.801±
0.143

0.823±
0.107

0.729±
0.075

0.724±
0.076

0.729±
0.075

0.777±
0.061

0.788±
0.059

0.777±
0.061

0.724±
0.070

0.720±
0.071

0.724±
0.071

anxiety
0.840±
0.079

0.810±
0.098

0.835±
0.081

0.720±
0.079

0.696±
0.084

0.718±
0.079

0.740±
0.069

0.772±
0.058

0.734±
0.071

0.749±
0.057

0.744±
0.056

0.749±
0.058

0.730±
0.086

0.737±
0.082

0.730±
0.086

pain
0.828±
0.148

0.741±
0.249

0.816±
0.163

− − − 0.828±
0.096

0.855±
0.086

0.825±
0.104

0.782±
0.102

0.826±
0.084

0.765±
0.111

0.752±
0.241

0.778±
0.216

0.753±
0.260

engagement
0.923±
0.029

0.910±
0.033

0.927±
0.029

0.737±
0.064

0.739±
0.061

0.737±
0.064

0.718±
0.085

0.720±
0.083

0.718±
0.085

0.753±
0.075

0.758±
0.073

0.752±
0.075

0.749±
0.075

0.719±
0.087

0.745±
0.076

average
0.872±
0.105

0.833±
0.163

0.867±
0.114

0.761±
0.096

0.745±
0.110

0.759±
0.096

0.754±
0.092

0.768±
0.094

0.752±
0.095

0.765±
0.077

0.779±
0.075

0.761±
0.079

0.739±
0.137

0.739±
0.130

0.738±
0.146

MSNB

tiredness
0.925±
0.114

0.945±
0.079

0.913±
0.137

0.929±
0.082

0.935±
0.074

0.929±
0.082

0.664±
0.116

0.715±
0.072

0.666±
0.115

0.752±
0.118

0.743±
0.123

0.752±
0.117

0.698±
0.074

0.738±
0.046

0.702±
0.069

anxiety
0.905±
0.133

0.926±
0.095

0.900±
0.139

0.674±
0.075

0.760±
0.043

0.655±
0.083

0.741±
0.060

0.692±
0.079

0.733±
0.062

0.685±
0.082

0.719±
0.076

0.684±
0.082

0.771±
0.115

0.786±
0.102

0.772±
0.115

pain
0.922±
0.166

0.930±
0.164

0.921±
0.173

− − − 0.950±
0.097

0.951±
0.091

0.958±
0.081

0.788±
0.097

0.727±
0.112

0.780±
0.091

0.967±
0.105

0.967±
0.105

0.975±
0.079

engagement
0.916±
0.171

0.944±
0.112

0.902±
0.200

0.613±
0.089

0.670±
0.076

0.614±
0.088

0.601±
0.074

0.673±
0.064

0.600±
0.074

0.636±
0.130

0.676±
0.127

0.637±
0.129

0.676±
0.157

0.742±
0.115

0.664±
0.167

average
0.917±
0.142

0.936±
0.113

0.909±
0.158

0.738±
0.160

0.788±
0.129

0.733±
0.164

0.739±
0.158

0.757±
0.136

0.739±
0.159

0.715±
0.120

0.716±
0.110

0.713±
0.117

0.778±
0.161

0.808±
0.132

0.778±
0.164

Results are summarized as mean and standard deviation
(STD) across the 10 folds (and across the five window sizes
|W |=3,5,7,9,11 for SVM with RBF kernel, SNB and RF).

For each classifier, recognition rates varied across pa-
tients, but in general, the predictive relations got higher
discriminative capacity for tiredness and pain. The results
for tiredness are consistent with the highest agreement of
psychiatrists in Fleiss’ κ for this state. In contrast, anxiety
was not the best classified for any patient and any classifier,
and this is consistent with the raters’ opinion.

Results for P1 were higher than the other patients.
Psychiatrists that participated in this study considered that
P1 is an extrovert subject, and this situation could have
helped in the labelling process and could have an influence
on these results.

Average ROC AUC results were higher for MSNB for P1
and P5, but SVM with RBF kernel got the best average ROC
AUC results for patients P2 and P4; and RF had the better
average for P3.

The results in Table 4 reveal that all the computational
models learned predictive relations with ROC AUC ≥ 0.60,
except for P2 and P3, in engagement using SNB whose
results were ≥ 0.57.

Group comparisons of ROC AUC results of the 10-fold
cross validation for each classifier (SVM with RBF kernel,
SNB, RF and MSNB) with respect to each patient and each
affective state were performed using Friedman test at 5%
significance level. Post-hoc paired comparisons (SVM vs
SNB, SVM vs RF, SVM vs MSNB, SNB vs RF, SNB vs MSNB
and RF vs MSNB) were performed using Wilcoxon signed-
rank tests with Bonferroni correction threshold (significance
level: p < 0.008). It is important to highlight that we
obtained 5826 samples for P1, 8935 samples for P2, 7334
for P3, 6068 for P4 and 3814 samples for P5 of hand
movements and fingers pressure associated with affective
states to test the classifiers.

Statistically significant differences in ROC AUC were
found between the four classifiers, Friedman: χ2(3) =
84.608; p < 0.05. The post hoc tests report is presented
in Table 5 and the differences were significant when SNB
classifier was compared with any other of the three remain-
ing classifiers. These results suggest that either MSNB, SVM
with RBF kernel or RF may be adequate choices without
significant differences in their performances as determined
by the ROC AUC.

These results are promising as they reveal a mechanism
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TABLE 5
STATISTICAL SIGNIFICANCE ANALYSIS USING FRIEDMAN TEST AND

WILCOXON SIGN RANK POST-HOC. SIGNIFICANT P VALUES ARE
HIGHLIGHTED IN BOLD.

Friedman: χ2(3) = 84.608, p < 0.05

Post-Hoc Wilcoxon Sign Rank:

SVM vs
SNB

SVM vs
RF

SVM vs
MSNB

SNB vs
RF

SNB vs
MSNB

RF vs
MSNB

W -5.789 -1.113 -0.941 -4.396 -9.998 -0.162

p < 0.008 0.266 0.347 < 0.008 < 0.008 0.871

(patterns of hand motions) that could help estimating non-
basic affective states for some stroke patients in the scope of
virtual rehabilitation.

7 DISCUSSION

The proposed computational model, MSNB, was compet-
itive with SVM and RF. The results give evidence that
the information at several scales of time (multiresolution
strategy) can help to estimate the aforesaid states in time
course. The multiresolution idea can be implemented using
another classifier as base classifier, for example, we can use
SVM as base classifier to obtain MSVM (Multiresolution
using SVM), but the advantage of using SNB classifier as
base classifier is that SNB is simpler than SVM with RBF
kernel.

Comparison of SNB and RF indicates that RF got sig-
nificant higher ROC AUC values than SNB classifier, in
this work. However, when SNB operates as base classifier
at the multiresolution strategy, the new classifier MSNB is
competitive with RF.

The research of Aung et al. (2014) [40] that addressed
the problem of automatic recognizing of affective states in
rehabilitation of patients with chronic pain has important
elements related with this work. They included the labelling
process of pain observed in videos of patients, but the
tags were continuous values in the interval [0,1], although
afterwards they converted them to binary and used SVM to
build the classification model. So, in a certain way, the work
of Aung et al. (2014) served as reference for our results. As it
was presented, the MSNB can have better results than SVM
in the estimation of pain.

In Bonarini et al. (2010) [43], KNN classifier was used
and they obtained 0.88 of accuracy detecting stress in
post-stroke patients, but they employed obstructive sensors
for registering various biological signals, as blood volume
pressure, electrocardiogram and respiration, among others.
An important issue of our investigation is to use non-
obstructive measurements for facilitating the system to be
used in daily rehabilitation at home. Another necessity for
our purpose is to avoid expensive devices thus the system
can be accessible to low and middle income people. Robotic
systems are employed in [42], [43] but these systems can be
expensive.

The aforementioned works focused in one affective state,
and this investigation addressed the problem of four states
that were recommended for rehabilitation of post-stroke

patients by therapists, psychiatrists and an affective com-
puting expert.

Unsurprisingly, anxiety was consistently the most diffi-
cult state to identify. This is in line with the experts remarks
about the challenge to label this affective state and their
apparent disagreement during the labelling.

According to experts who participated in this study,
the labelling process using only the frontal video of the
patients and IMI is complex, particularly for anxiety and
pain. Patient P1 has characteristics that allowed the experts
to make better discrimination in the labelling process and
his movements allowed all classifiers achieve favourable
results for his states. The argument that arose was that P1
was more spontaneous and variable in his expressions than
the other patients. Personal differences can affect the results,
for that reason it is necessary to get a good labelling and to
build models tailored to each patient.

In rehabilitation, pain is a particularly critical state;
painful exercises may be harmful to patients’ recovery. The
patients involved in this study reported low levels of pain
using the intrinsic motivation inventory (IMI) questionnaire
at the end of each session.

Gesture Therapy is an accessible virtual rehabilitation
platform that is designed low-cost for intended use in low
and middle income countries. The gripper and accompany-
ing software can be installed in any regular low specification
computer. Incorporating the recognition of affective states
to the therapy plan through its adaptation engine, it could
further enhance the tailoring of rehabilitation tasks to the
patient needs. This would represent an important techno-
logical advance for the system and its users.

8 CONCLUSIONS

This study confirmed the feasibility to estimate the presence
of four states in patients under upper extremity rehabili-
tation by means of classification models that only use as
inputs the information of their hand motions and fingers
pressure (non-obstructive measurements that can be sensed
in daily activities) to a degree and which could be useful
for later leverage in adaptive systems. This possibility was
enhanced with the proposed computational model that tries
to detect more precisely the manifestation of the states by
integrating different temporal resolutions simultaneously.
More specifically, we have obtained predictive models for
decoding specific states from gripping measurements (hand
motions and fingers pressure) of 5 post-stroke patients
while they were interacting with a virtual rehabilitation
system. These results suggest that at least tiredness and pain
are susceptible of exploitable classification from observable
data streams. The results are promising because they re-
veal a mechanism of affective state recognition in virtual
rehabilitation scopes and this is useful for the adaptation
of the system to the patient. Anxiety recovery was also
above the random decision levels. Nevertheless, anxiety and
engagement may require more aggressive models before
satisfactory recognition levels can be claimed. A larger trial
should confirm whether this apparent tendency can be
further generalized to the population.

The dynamic problem of recognizing affective states
through hand movements and fingers pressure was treated
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with static machine learning classifiers using a feature vec-
tor which includes averages of speed and acceleration of the
movements and pressures in the time course (the dynamic
behaviour). Considering hand movements and fingers pres-
sure with this feature vector is an important contribution of
this work. The other contribution is the proposed compu-
tational model, MSNB, that for this problem is competitive
with SVM and RF.

At the present, patient’s observable performance is the
only factor to adjust game difficulty in GT. The adjustment
of the game difficulty levels could be done with the com-
bination of performance indicators and detected affective
states.

As part of future work, we consider to improve MSNB
performance implementing other strategies in the base clas-
sifier SNB as changing the calculation of mutual informa-
tion. We also consider exploit transfer learning strategies
to migrate population-based models to specific patient-
based models. Another aspect is to study obstrusive and
non-obstrusive measurements of observable surrogates to
estimate affective states in serious games environments;
and analyze other affective states that were suggested by
specialists for future studies, such as stress and depression.
We are also beginning to study multi-classification models.
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