488 research outputs found
The effect of Nordic hamstring exercise intervention volume on eccentric strength and muscle architecture adaptations : a systematic review and meta-analyses
Although performance of the Nordic hamstring exercise (NHE) has been shown to elicit adaptations that may reduce hamstring strain injury (HSI) risk and occurrence, compliance in NHE interventions in professional soccer teams is low despite a high occurrence of HSI in soccer. A possible reason for low compliance is the high dosages prescribed within the recommended interventions. The aim of this review was to investigate the effect of NHE-training volume on eccentric hamstring strength and biceps femoris fascicle length adaptations. A literature search was conducted using the SPORTDiscus, Ovid, and PubMed databases. A total of 293 studies were identified prior to application of the following inclusion criteria: (1) a minimum of 4 weeks of NHE training was completed; (2) mean ± standard deviation (SD) pre- and post-intervention were provided for the measured variables to allow for secondary analysis; and (3) biceps femoris muscle architecture was measured, which resulted in 13 studies identified for further analysis. The TESTEX criteria were used to assess the quality of studies with risk of bias assessment assessed using a fail-safe N (Rosenthal method). Consistency of studies was analysed using I as a test of heterogeneity and secondary analysis of studies included Hedges' g effect sizes for strength and muscle architecture variables to provide comparison within studies, between-study differences were estimated using a random-effects model. A range of scores (3-11 out of 15) from the TESTEX criteria were reported, showing variation in study quality. A 'low risk of bias' was observed in the randomized controlled trials included, with no study bias shown for both strength or architecture (N = 250 and 663, respectively; p < 0.001). Study consistency was moderate to high for strength (I = 62.49%) and muscle architecture (I = 88.03%). Within-study differences showed that following interventions of ≥ 6 weeks, very large positive effect sizes were seen in eccentric strength following both high volume (g = 2.12) and low volume (g = 2.28) NHE interventions. Similar results were reported for changes in fascicle length (g ≥ 2.58) and a large-to-very large positive reduction in pennation angle (g ≥ 1.31). Between-study differences were estimated to be at a magnitude of 0.374 (p = 0.009) for strength and 0.793 (p < 0.001) for architecture. Reducing NHE volume prescription does not negatively affect adaptations in eccentric strength and muscle architecture when compared with high dose interventions. These findings suggest that lower volumes of NHE may be more appropriate for athletes, with an aim to increase intervention compliance, potentially reducing the risk of HSI
Identification of senescent cells in multipotent mesenchymal stromal cell cultures: Current methods and future directions
Regardless of their tissue of origin, multipotent mesenchymal stromal cells (MSCs) are commonly expanded in vitro for several population doublings, in order to achieve a sufficient number of cells for therapy. Prolonged MSC expansion has shown to result in phenotypical, morphological and gene expression changes in MSCs, which ultimately lead to the state of senescence. The presence of senescent cells in therapeutic MSC batches is undesirable, as it reduces their viability, differentiation potential and trophic capabilities. Additionally, senescent cells acquire senescence-activated secretory phenotype, which may not only induce apoptosis in the neighbouring host cells following MSC transplantation, but also trigger local inflammatory reactions. This review outlines the current and promising new methodologies for the identification of senescent cells in MSC cultures, with a particular emphasis on non-destructive and label-free methodologies. Technologies allowing identification of individual senescent cells, based on new surface markers, offer potential advantage for targeted senescent cell removal using new-generation senolytic agents, and subsequent production of therapeutic MSC batches fully devoid of senescent cells. Methods or a combination of methods that are non-destructive and label-free, for example involving cell size and spectroscopic measurements, could be the best way forward as they do not modify the cells of interest thus maximising the final output of therapeutic-grade MSC cultures. The further incorporation of machine learning methods has also recently shown promise in facilitating, automating and enhancing the analysis of these measured data
The role of superficial geology in controlling groundwater recharge in the weathered crystalline basement of semi-arid Tanzania
Study region: Little Kinyasungwe River Catchment, central semi-arid Tanzania. Study focus: The structure and hydraulic properties of superficial geology can play a crucial role in controlling groundwater recharge in drylands. However, the pathways by which groundwater recharge occurs and their sensitivity to environmental change remain poorly resolved. Geophysical surveys using Electrical Resistivity Tomography (ERT) were conducted in the study region and used to delineate shallow subsurface stratigraphy in conjunction with borehole logs. Based on these results, a series of local-scale conceptual hydrogeological models was produced and collated to generate a 3D conceptual model of groundwater recharge to the wellfield. New hydrological insights for the region: We propose that configurations of superficial geology control groundwater recharge in dryland settings as follows: 1) superficial sand deposits act as collectors and stores that slowly feed recharge into zones of active faulting; 2) these fault zones provide permeable pathways enabling greater recharge to occur; 3) ‘windows’ within layers of smectitic clay that underlie ephemeral streams may provide pathways for focused recharge via transmission losses; and 4) overbank flooding during high intensity precipitation events increases the probability of activating such permeable pathways. These conceptual models provide a physical basis to improve numerical models of groundwater recharge in drylands, and a conceptual framework to evaluate strategies (e.g., Managed Aquifer Recharge) to artificially enhance the availability of groundwater resources in these regions
The effect of exercise compliance on risk reduction for hamstring strain injury : a systematic review and meta-analyses
Eccentric strength training can reduce the risk of hamstring strain injury (HSI) occurrence; however, its implementation can be impacted by athlete compliance and prescription. The aim of this review was to investigate the effects of intervention compliance, consistency and modality, on the prevention of HSIs among athletes. A literature search was conducted. 868 studies were identified prior to the application of the exclusion criteria which resulted in 13 studies identified. Random effects models were used to produce log odds ratios and 95% confidence intervals. Very high (>75.1%), moderate-high (50.1–75%), low-moderate (25.1–50%) and very low (25%) and 1-, 1.01–3.00-, >3.01-weeks/session were used as thresholds of compliance and consistency, respectively. Modality was also observed. A positive effect on HSI incidence -0.61 (−1.05 to −0.17), favoring the intervention treatments (Z = −2.70, p = 0.007). There were non-significant, large differences between compliance (p = 0.203, Z = −1.272) and consistency (p = 0.137, Z = −1.488), with increased compliance and consistency showing greater effectiveness. A significant difference between intervention modalities was observed (p 0.001, Z = −4.136), with eccentric interventions being superiorly effective. Compliance of >50.1% and consistent application with 3 weeks/session having positive effects on HSI incidence. Training interventions that can achieve high levels of compliance, and can be consistently performed, should be the objective of future practice
Effects of variations in resistance training frequency on strength development in well-trained populations and implications for in-season athlete training : a systematic review and meta-analysis
In-season competition and tournaments for team sports can be both long and congested, with some sports competing up to three times per week. During these periods of time, athletes need to prepare technically, tactically and physically for the next fixture and the short duration between fixtures means that, in some cases, physical preparation ceases, or training focus moves to recovery as opposed to progressing adaptations. The aim of this review was to investigate the effect of training frequency on muscular strength to determine if a potential method to accommodate in-season resistance training, during busy training schedules, could be achieved by utilizing shorter more frequent training sessions across a training week. A literature search was conducted using the SPORTDiscus, Ovid, PubMed and Scopus databases. 2134 studies were identified prior to application of the following inclusion criteria: (1) maximal strength was assessed, (2) a minimum of two different training frequency groups were included, (3) participants were well trained, and finally (4) compound exercises were included within the training programmes. A Cochrane risk of bias assessment was applied to studies that performed randomized controlled trials and consistency of studies was analysed using I as a test of heterogeneity. Secondary analysis of studies included Hedges' g effect sizes (g) and between-study differences were estimated using a random-effects model. Inconsistency of effects between pre- and post-intervention was low within-group (I = 0%), and moderate between-group (I ≤ 73.95%). Risk of bias was also low based upon the Cochrane risk of bias assessment. Significant increases were observed overall for both upper (p ≤ 0.022) and lower (p ≤ 0.008) body strength, pre- to post-intervention, when all frequencies were assessed. A small effect was observed between training frequencies for upper (g ≤ 0.58) and lower body (g ≤ 0.45). Over a 6-12-week period, there are no clear differences in maximal strength development between training frequencies, in well-trained populations. Such observations may permit the potential for training to be manipulated around competition schedules and volume to be distributed across shorter, but more frequent training sessions within a micro-cycle rather than being condensed into 1-2 sessions per week, in effect, allowing for a micro-dosing of the strength stimuli
Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa
Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets. Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies
First report of generalized face processing difficulties in möbius sequence.
Reverse simulation models of facial expression recognition suggest that we recognize the emotions of others by running implicit motor programmes responsible for the production of that expression. Previous work has tested this theory by examining facial expression recognition in participants with Möbius sequence, a condition characterized by congenital bilateral facial paralysis. However, a mixed pattern of findings has emerged, and it has not yet been tested whether these individuals can imagine facial expressions, a process also hypothesized to be underpinned by proprioceptive feedback from the face. We investigated this issue by examining expression recognition and imagery in six participants with Möbius sequence, and also carried out tests assessing facial identity and object recognition, as well as basic visual processing. While five of the six participants presented with expression recognition impairments, only one was impaired at the imagery of facial expressions. Further, five participants presented with other difficulties in the recognition of facial identity or objects, or in lower-level visual processing. We discuss the implications of our findings for the reverse simulation model, and suggest that facial identity recognition impairments may be more severe in the condition than has previously been noted
The El Nino event of 2015-2016: climate anomalies and their impact on groundwater resources in East and Southern Africa
The impact of climate variability on groundwater storage has received limited attention despite widespread dependence on groundwater as a resource for drinking water, agriculture and industry. Here, we assess the climate anomalies that occurred over Southern Africa (SA) and East Africa, south of the Equator (EASE), during the major El Niño event of 2015–2016, and their associated impacts on groundwater storage, across scales, through analysis of in situ groundwater piezometry and Gravity Recovery and Climate Experiment (GRACE) satellite data. At the continental scale, the El Niño of 2015–2016 was associated with a pronounced dipole of opposing rainfall anomalies over EASE and Southern Africa, north–south of ∼12∘ S, a characteristic pattern of the El Niño–Southern Oscillation (ENSO). Over Southern Africa the most intense drought event in the historical record occurred, based on an analysis of the cross-scale areal intensity of surface water balance anomalies (as represented by the standardised precipitation evapotranspiration index – SPEI), with an estimated return period of at least 200 years and a best estimate of 260 years. Climate risks are changing, and we estimate that anthropogenic warming only (ignoring changes to other climate variables, e.g. precipitation) has approximately doubled the risk of such an extreme SPEI drought event. These surface water balance deficits suppressed groundwater recharge, leading to a substantial groundwater storage decline indicated by both GRACE satellite and piezometric data in the Limpopo basin. Conversely, over EASE during the 2015–2016 El Niño event, anomalously wet conditions were observed with an estimated return period of ∼10 years, likely moderated by the absence of a strongly positive Indian Ocean zonal mode phase. The strong but not extreme rainy season increased groundwater storage, as shown by satellite GRACE data and rising groundwater levels observed at a site in central Tanzania. We note substantial uncertainties in separating groundwater from total water storage in GRACE data and show that consistency between GRACE and piezometric estimates of groundwater storage is apparent when spatial averaging scales are comparable. These results have implications for sustainable and climate-resilient groundwater resource management, including the potential for adaptive strategies, such as managed aquifer recharge during episodic recharge events
The Integrative Effects of Cognitive Reappraisal on Negative Affect: Associated Changes in Secretory Immunoglobulin A, Unpleasantness and ERP Activity
Although the regulatory role of cognitive reappraisal in negative emotional responses is widely recognized, this reappraisal's effect on acute saliva secretory immunoglobulin A (SIgA), as well as the relationships among affective, immunological, and event-related potential (ERP) changes, remains unclear. In this study, we selected only people with low positive coping scores (PCSs) as measured by the Trait Coping Style Questionnaire to avoid confounding by intrinsic coping styles. First, we found that the acute stress of viewing unpleasant pictures consistently decreased SIgA concentration and secretion rate, increased perceptions of unpleasantness and amplitude of late positive potentials (LPPs) between 200–300 ms and 400–1000 ms. After participants used cognitive reappraisal, their SIgA concentration and secretion rate significantly increased and their unpleasantness and LPP amplitudes significantly decreased compared with a control condition. Second, we found a significantly positive correlation between the increases in SIgA and the decreases in unpleasantness and a significantly negative correlation between the increases in SIgA and the increases in LPP across the two groups. This study is the first to demonstrate that cognitive reappraisal reverses the decrease of SIgA. In addition, it revealed strong correlations among affective, SIgA and electrophysiological changes with convergent multilevel evidence
- …