4,988 research outputs found

    Topological Dirac states beyond π\pi orbitals for silicene on SiC(0001) surface

    Full text link
    The discovery of intriguing properties related to the Dirac states in graphene has spurred huge interest in exploring its two-dimensional group-IV counterparts, such as silicene, germanene, and stanene. However, these materials have to be obtained via synthesizing on substrates with strong interfacial interactions, which usually destroy their intrinsic π\pi(pzp_z)-orbital Dirac states. Here we report a theoretical study on the existence of Dirac states arising from the px,yp_{x,y} orbitals instead of pzp_z orbitals in silicene on 4H-SiC(0001), which survive in spite of the strong interfacial interactions. We also show that the exchange field together with the spin-orbital coupling give rise to a detectable band gap of 1.3 meV. Berry curvature calculations demonstrate the nontrivial topological nature of such Dirac states with a Chern number C=2C = 2, presenting the potential of realizing quantum anomalous Hall effect for silicene on SiC(0001). Finally, we construct a minimal effective model to capture the low-energy physics of this system. This finding is expected to be also applicable to germanene and stanene, and imply great application potentials in nanoelectronics.Comment: 6 Figures , Accepted by Nano Letter

    Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth

    Full text link
    Nematic quantum fluids with wavefunctions that break the underlying crystalline symmetry can form in interacting electronic systems. We examine the quantum Hall states that arise in high magnetic fields from anisotropic hole pockets on the Bi(111) surface. Spectroscopy performed with a scanning tunneling microscope shows that a combination of local strain and many-body Coulomb interactions lift the six-fold Landau level (LL) degeneracy to form three valley-polarized quantum Hall states. We image the resulting anisotropic LL wavefunctions and show that they have a different orientation for each broken-symmetry state. The wavefunctions correspond precisely to those expected from pairs of hole valleys and provide a direct spatial signature of a nematic electronic phase

    The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites

    Get PDF
    Gamma aminopropyltriethoxysilane (GS) and dichlorodiethylsilane (DCS) were employed for surface modification of radiata pine (Pinus radiata) wood fibre. Levels of fibre moisture were carefully controlled to optimise chemical and hydrogen bonding with these silane coupling agents. The effect of pre-treatment using 2% sodium hydroxide, shown to be effective in assisting silane coupling for other natural fibres [1], was also investigated. X-ray Photoelectron Spectroscopy (XPS) and Nuclear Magnetic Resonance (NMR) were used to characterise modification of the wood fibre. Concentrations of up to 3.2wt% Si were obtained on the fibre surface due to silane coupling, however, pre-treatment was found to dramatically reduce this value. NMR provided evidence that coupling had occurred between the fibre and DCS by a reaction producing ether linkages between the hydroxyl groups on the wood fibre and silane. Pre-treatment and treatment were found to have an insignificant effect on fibre strength. Composite sheets were produced by blending fibre (5, 10 and 20wt%) with polyethylene followed by extrusion. An increase in strength was obtained at fibre contents of 5wt% for all treatments compared to composites with untreated fibre. This is believed to be mainly due to increased compatibility of the fibre surface to polyethylene. However, there was no such improvement obtained at higher fibre contents. Evidence suggests that the production of voids is limiting composite strength

    Kondo Effect of Quantum Dots in the Quantum Hall Regime

    Full text link
    Quantum dots in the quantum Hall regime can have pairs of single Slater determinant states that are degenerate in energy. We argue that these pairs of many body states may give rise to a Kondo effect which can be mapped into an ordinary Kondo effect in a fictitious magnetic field. We report on several properties of this Kondo effect using scaling and numerical renormalization group analysis. We suggest an experiment to investigate this Kondo effect.Comment: To appear in Phys. Rev. B (5 pages, 4 figures); references added; several changes in tex

    Non-Equilibrium Edge Channel Spectroscopy in the Integer Quantum Hall Regime

    Full text link
    Heat transport has large potentialities to unveil new physics in mesoscopic systems. A striking illustration is the integer quantum Hall regime, where the robustness of Hall currents limits information accessible from charge transport. Consequently, the gapless edge excitations are incompletely understood. The effective edge states theory describes them as prototypal one-dimensional chiral fermions - a simple picture that explains a large body of observations and calls for quantum information experiments with quantum point contacts in the role of beam splitters. However, it is in ostensible disagreement with the prevailing theoretical framework that predicts, in most situations, additional gapless edge modes. Here, we present a setup which gives access to the energy distribution, and consequently to the energy current, in an edge channel brought out-of-equilibrium. This provides a stringent test of whether the additional states capture part of the injected energy. Our results show it is not the case and thereby demonstrate regarding energy transport, the quantum optics analogy of quantum point contacts and beam splitters. Beyond the quantum Hall regime, this novel spectroscopy technique opens a new window for heat transport and out-of-equilibrium experiments.Comment: 13 pages including supplementary information, Nature Physics in prin

    Place fields and the cognitive map

    Get PDF
    The discovery of place cells by John O'Keefe in the early 1970s was a breakthrough not just for systems neuroscience, but also for psychology: place fields provided a clear neural substrate for the notion of a cognitive map, a construct devised to explain rat learning and spatial cognition. However, is the robust location-related firing of place cells still best conceptualised as a cognitive map? In this commentary, we reassess this view of hippocampus function in light of subsequent findings on place cells. We argue that as place fields encode local space, and as they are modulated by ongoing behavior, the representation they provide may be more cognitive than map-like

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy ϵ(q)\epsilon(\vec{q}) has a current-induced contribution proportional to qJ\vec{q}\cdot \vec{\cal J}, where J\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j109Acm2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    Full text link
    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid¿solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.The authors thank the Universitat Politecnica de Valencia (UPV, Vicerrectorado de Investigacion) for its support (project PAID-05-09 ref 4302) and Debra Westall (UPV) for revising the manuscript.Cruz González, JM.; Fita Fernández, IC.; Soriano Martinez, L.; Paya Bernabeu, JJ.; Borrachero Rosado, MV. (2013). The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cement and Concrete Research. 50:51-61. doi:10.1016/j.cemconres.2013.03.019S51615
    corecore